【题目】已知椭圆(a>b>0)的一个焦点与抛物线y2=4x的焦点F重合,且椭圆短轴的两个端点与点F构成正三角形.
(1)求椭圆的方程;
(2)若过点(1,0)的直线l与椭圆交于不同的两点P,Q,试问在x轴上是否存在定点E(m,0),使恒为定值?若存在,求出E的坐标,并求出这个定值;若不存在,请说明理由.
【答案】(1);(2)见解析.
【解析】试题分析:(1)求出抛物线的焦点坐标,可得c,再求出b的值,即可求椭圆的方程;
(2)分类讨论,设出直线方程,代入椭圆方程,利用韦达定理,结合向量的数量积公式,即可求得结论.
试题解析:
(1)由题意,知抛物线的焦点为F(,0),
所以c==.
因为椭圆短轴的两个端点与F构成正三角形,
所以b=×=1.
可求得a=2,故椭圆的方程为+y2=1.
(2)假设存在满足条件的点E,当直线l的斜率存在时设其斜率为k,则l的方程为y=k(x-1).
由
得(4k2+1)x2-8k2x+4k2-4=0.
设P(x1,y1),Q(x2,y2),
所以x1+x2=,x1x2=.
则=(m-x1,-y1),=(m-x2,-y2),
所以·=(m-x1)(m-x2)+y1y2
=m2-m(x1+x2)+x1x2+y1y2
=m2-m(x1+x2)+x1x2+k2(x1-1)(x2-1)
=m2-++k2
=
=
= (4m2-8m+1)+.
要使·为定值,则2m-=0,
即m=,此时·=.
当直线l的斜率不存在时,
不妨取P,Q,
由E,可得=,=,
所以·=-=.
综上,存在点E,使·为定值.
科目:高中数学 来源: 题型:
【题目】已知椭圆=1(a>b>0)的右焦点为F(2,0),且过点(2,).
(1)求椭圆的标准方程;
(2)设直线l:y=kx(k>0)与椭圆在第一象限的交点为M,过点F且斜率为-1的直线与l交于点N,若sin∠FON(O为坐标原点),求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的最大值为,其图像相邻两条对称轴之间的距离为,且的图像关于点对称,则下列判断正确的是()
A. 函数在上单调递增
B. 函数的图像关于直线对称
C. 当时,函数的最小值为
D. 要得到函数的图像,只需要将的图像向右平移个单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从装有个红球和个黒球的口袋内任取个球,则互为对立事件是( )
A. 至少有一个黒球与都是黒球B. 至少有一个黒球与都是红球
C. 至少有一个黒球与至少有个红球D. 恰有个黒球与恰有个黒球
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0.
(1)求数列的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校高三年级有学生1000名,经调查,其中750名同学经常参加体育锻炼(称为类同学),另外250名同学不经常参加体育锻炼(称为类同学),现用分层抽样方法(按类、类分两层)从该年级的学生中共抽取100名同学,如果以身高达作为达标的标准,对抽取的100名学生,得到以下列联表:
身高达标 | 身高不达标 | 总计 | |
经常参加体育锻炼 | 40 | ||
不经常参加体育锻炼 | 15 | ||
总计 | 100 |
(Ⅰ)完成上表;
(Ⅱ)能否在犯错误的概率不超过0.05的前提下认为经常参加体育锻炼与身高达标有关系(的观测值精确到0.001)?
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某养殖的水产品在临近收获时,工人随机从水中捕捞只,其质量分别在
(单位:克),经统计分布直方图如图所示.
(1)求这组数据的众数;
(2)现按分层抽样从质量为的水产品种随机抽取只,在从这只中随机抽取只,求这只水产品恰有只在内的概率;
(3)某经销商来收购水产品时,该养殖场现还有水产品共计约只要出售,经销商提出如下两种方案:
方案A:所有水产品以元/只收购;
方案B:对于质量低于克的水产品以元/只收购,不低于克的以元/只收购,
通过计算确定养殖场选择哪种方案获利更多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l的参数方程为(其中t为参数).现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=6cosθ.
(Ⅰ)写出直线l普通方程和曲线C的直角坐标方程;
(Ⅱ)过点M(-1,0)且与直线l平行的直线l1交C于A,B两点,求|AB|.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com