精英家教网 > 高中数学 > 题目详情
6.已知f(x)=ax(a>0且a≠1),若f(-3)>f(-π)则a的取值范围是(  )
A.a>0B.a>1C.a<0D.0<a<1

分析 根据指数函数的单调性即可判断a的范围.

解答 解:f(x)=ax(a>0且a≠1),f(-3)>f(-π),
又-3>-π,
∴f(x)增函数,
∴a>1,
故选:B

点评 本题考查了指数函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.方程sin2x-acosx=0在x∈($\frac{π}{2}$,$\frac{4π}{3}$]有且仅有一解.则实数a的取值范围是(  )
A.a≤0B.a<-$\frac{3}{2}$或a=0C.a<-$\frac{3}{2}$D.a<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知sin($\frac{7π}{12}$-α)=$\frac{1}{3}$,α是第一象限角,求sin(α-$\frac{π}{12}$)+cos($\frac{π}{12}$-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若做直线运动的物体在[t0,t0+△t]时间内位移的变化量△s=t03△t-3t02△t2+△t3,则该物体在t=t0时的瞬时速度v=t03

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M≥0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的一个上界,已知函数f(x)=1+a($\frac{1}{2}$)x+($\frac{1}{4}$)x,g(x)=log${\;}_{\frac{1}{2}}$$\frac{1+x}{x-1}$.
(1)求函数g(x)在区间[$\frac{5}{3}$,3]上的所有上界构成的集合;
(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若$\frac{π}{2}$<α<π,化简$\frac{cos(α-\frac{π}{2})}{si{n}^{2}(\frac{3π}{2}-α)\sqrt{1+ta{n}^{2}(3π+α)}}$-$\frac{sin(4π+α)\sqrt{1-si{n}^{2}(π+α)}}{co{s}^{2}(π-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数y=sin(2x+$\frac{π}{4}$)+1.
(1)画出该函数在长度为一个周期的闭区间上的简图;
(2)求该函数的对称中心;
(3)写出f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合A={1,2,3,4,5},A∩B={1,3,5},A∪B={0,1,2,3,4,5,6},那么集合B为{0,1,3,5,6}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列函数的定义域:
(1)y=log3(4-2x);
(2)y=log${\;}_{\frac{1}{3}}$$\sqrt{3x-5}$.

查看答案和解析>>

同步练习册答案