精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.
(1)求使直线l和y=f(x)相切且以P为切点的直线方程;
(2)求使直线l和y=f(x)相切且切点异于P的直线方程y=g(x);
(3)在(2)的条件下,求F(x)=f(x)+tg(x)(t为常数)在[2,+∞)上单调时,t的取值范围.

解:(1)由f(x)=x3-3x得,f′(x)=3x2-3,
过点P且以P(1,-2)为切点的直线的斜率f′(1)=0,
∴所求直线方程为y=-2.
(2)设过P(1,-2)的直线l与y=f(x)切于另一点(x0,y0),
则f′(x0)=3x02-3.
又直线过(x0,y0),P(1,-2),
故其斜率可表示为=
=3x02-3,
即x03-3x0+2=3(x02-1)•(x0-1),
解得x0=1(舍)或x0=-
故所求直线的斜率为k=3×(-1)=-
∴y-(-2)=-(x-1),
即9x+4y-1=0.
(3)由(2)得g(x)=-x+,则F(x)=x3-3x+t(-x+),
∴F′(x)=3x3-(t+3),
t+3≤0时,F(x)≥0在[2,+∞)上恒成立,F(x)在[2,+∞)上是增函数;
t+3>0时,由F′(x)=0得极值点:x1=-,x2=
,即,即t≤4时,F(x)在[2,+∞)上是增函数,
∴t的取值范围:t≤4.
分析:(1)由已知可得斜率函数为f′(x)=3x2-3,进而求出所过点切线的斜率,代入点斜式公式即可.
(2)设另一切点为(x0,y0),求出该点切线方程,再由条件列方程计算.
(3)由(2)得g(x)=-x+,则F(x)=x3-3x+t(-x+),求其导数,再分类讨论:当t+3≤0时,F(x)≥0在[2,+∞)上恒成立,F(x)在[2,+∞)上是增函数;当t+3>0时,求得当t≤4时,F(x)在[2,+∞)上是增函数,从而求出t的取值范围.
点评:本小题主要考查利用导数研究曲线上某点切线方程′、利用导数研究函数的单调性等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案