【题目】一个工厂在某年连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:
x | 1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 |
y | 2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;
(2)①建立月总成本y与月产量x之间的回归方程;
②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?
(均精确到0.001)
附注:①参考数据:,
,
②参考公式:相关系数,
回归方程中斜率和截距的最小二乘估计公式分别为:.
科目:高中数学 来源: 题型:
【题目】用0,1,2,3,4,5这六个数字组成无重复数字的四位数.
(1)在组成的四位数中,求所有偶数的个数;
(2)在组成的四位数中,求比2430大的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C:(a>b>0)的左、右焦点分别为,离心率为,过焦点且垂直于x轴的直线被椭圆C截得的线段长为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点M(0,-1),直线l经过点N(2,1)且与椭圆C相交于A,B两点(异于点M),记直线MA的斜率为,直线MB的斜率为,证明 为定值,并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线过点,其参数方程为(为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)求已知曲线和曲线交于两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}为正项等比数列,a1+a2=6,a3=8.
(1)求数列{an}的通项公式an;
(2)若bn=,且{bn}前n项和为Tn,求Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex+1-alnax+a(a>0).
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若关于x的不等式f(x)>0恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4—4:坐标系与参数方程]
在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求的直角坐标方程;
(2)若与有且仅有三个公共点,求的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,矩形中,,是边上异于端点的动点,,将矩形沿折叠至处,使面(如图2).点满足,.
(1)证明:;
(2)设,当为何值时,四面体的体积最大,并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知、分别为双曲线的左右焦点,左右顶点为、,是双曲线上任意一点,则分别以线段、为直径的两圆的位置关系为( )
A. 相交B. 相切C. 相离D. 以上情况均有可能
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com