精英家教网 > 高中数学 > 题目详情
14.定义:称$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$为n个正数p1,p2,…,pn的“均倒数”,若数列{an}的前n项的“均倒数”为$\frac{1}{2n-1}$,则数列{an}的通项公式为4n-3.

分析 设数列{an}的前n项和为Sn.由题意可得:$\frac{n}{{a}_{1}+{a}_{2}+…+{a}_{n}}$=$\frac{1}{2n-1}$,即Sn=2n2-n,利用递推关系即可得出.

解答 解:设数列{an}的前n项和为Sn
由题意可得:$\frac{n}{{a}_{1}+{a}_{2}+…+{a}_{n}}$=$\frac{1}{2n-1}$,
∴Sn=2n2-n,
∴n=1时,a1=S1=1;
n≥2时,an=Sn-Sn-1=2n2-n-[2(n-1)2-(n-1)]=4n-3,
n=1时上式也成立,
∴an=4n-3.
故答案为:4n-3.

点评 本题考查了新定义“倒均数”、数列递推关系、数列通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.以点(2,-3)为圆心且与直线2mx-y-2m-1=0(m∈R)相切的所有圆中,面积最大的圆的标准方程为(x-2)2+(y+3)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\left\{\begin{array}{l}{x^2}-mx+m-1\;,\;x≥0\\ f({x+2})\;,\;x<0\end{array}\right.$.
(Ⅰ)当m=8时,求f(-4)的值;
(Ⅱ)当m=8且x∈[-8,8]时,求|f(x)|的最大值;
(Ⅲ)对任意的实数m∈[0,2],都存在一个最大的正数K(m),使得当x∈[0,K(m)]时,不等式|f(x)|≤2恒成立,求K(m)的最大值以及此时相应的m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,半径长度为2,则该几何体的表面积是(  )
A.17πB.18πC.20πD.28π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个年级有12个班,每个班有50名学生,随机编号为1~50,为了了解他们课外的兴趣,要求每班第40号学生留下来进行问卷调查,这运用的抽样方法是(  )
A.分层抽样B.抽签法C.随机数表法D.系统抽样法

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设变量x,y满足约束条件$\left\{\begin{array}{l}{y≤3x-2}&{\;}\\{x-2y+1≤0}&{\;}\\{2x+y≤8}&{\;}\end{array}\right.$,则y-2x的最大值是(  )
A.-4B.-2C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设数列{an}的前n项和为Sn,且a1=a2=1,{nSn+(n+2)an}为等差数列,则a2017=2017•2-2014

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求满足下列条件的椭圆的标准方程.
(1)长轴与短轴的和为18,焦距为6;
(2)焦点在x轴上过点(0,2),长轴长为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.现有四个函数:①y=x•sinx,②y=x•cosx,③y=x•|cosx|,④y=x•2x 的部分图象如图,但顺序被打乱,则按照从左到右将图象对应的函数序号正确的排列是①④②③

查看答案和解析>>

同步练习册答案