精英家教网 > 高中数学 > 题目详情

已知函数是定义在上的偶函数,且当时,.现已画出函数轴左侧的图像,如图所示,并根据图像

(1)写出函数的增区间;

(2)写出函数的解析式;     

(3)若函数,求函数的最小值。

 

【答案】

(1) (2)(3)的最小值为 

【解析】

试题分析:(1)在区间 上单调递增。  3分

(2)设,则 

函数是定义在上的偶函数,且当时,

 

  7分

(3),对称轴方程为:

时,为最小; 8分

时,为最小;  9分

时,为最小 10分

综上有:的最小值为 12分

考点:本题考查了函数的图象及性质

点评:对于动轴定区间的一元二次函数求最值问题,往往分类讨论求解,属基础题

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届广西柳州铁路一中高一上学期第一次月考数学试卷(解析版) 题型:解答题

已知函数是定义在上的奇函数,且

(1)求函数的解析式;

(2)用单调性的定义证明上是增函数;

(3)解不等式

 

查看答案和解析>>

科目:高中数学 来源:2015届辽宁省本溪市高一上学期第一次月考数学试卷(解析版) 题型:解答题

(12分)已知函数是定义在上的奇函数,且

(1)确定函数的解析式;

(2)用定义证明在(-1 ,1)上是增函数;

(3)解不等式

 

查看答案和解析>>

科目:高中数学 来源:2013届广东省高二下期中文科数学试卷(解析版) 题型:选择题

已知函数是定义在上的以5为周期的奇函数, 若,

  ,则a的取值范围是 (    )

A.                                 B.

C.                                  D.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省协作体高三3月调研理科数学试卷(解析版) 题型:解答题

已知函数是定义在上的奇函数,当时, (其中e是自然界对数的底,)

(Ⅰ)设,求证:当时,

(Ⅱ)是否存在实数a,使得当时,的最小值是3 ?如果存在,求出实数a的值;如果不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:黑龙江省2012届高二下学期期末考试数学(理) 题型:解答题

已知函数是定义在上的奇函数,且

(1)确定函数的解析式;

(2)判断并证明的单调性;

(3)解不等式

 

查看答案和解析>>

同步练习册答案