【题目】如图所示,已知是直角梯形, , , 平面.
(1)证明: ;
(2)若是的中点,证明: 平面;
(3)若,求三棱锥的体积.
科目:高中数学 来源: 题型:
【题目】中国政府实施“互联网+”战略以来,手机作为客户端越来越为人们所青睐,通过手机实现衣食住行消费已经成为一种主要的消费方式,“一机在手,走遍天下”的时代已经到来。在某著名的夜市,随机调查了100名顾客购物时使用手机支付的情况,得到如下的列联表,已知其中从使用手机支付的人群中随机抽取1人,抽到青年的概率为.
(1)根据已知条件完成列联表,并根据此资料判断是否有的把握认为“市场购物用手机支付与年龄有关”?
(2)现采用分层抽样从这100名顾客中按照“使用手机支付”和“不使用手机支付”中抽取得到一个容量为5的样本,设事件为“从这个样本中任选2人,这2人中至少有1人是不使用手机支付的”,求事件发生的概率?
列联表
青年 | 中老年 | 合计 | |
使用手机支付 | 60 | ||
不使用手机支付 | 24 | ||
合计 | 100 |
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆()的左、右焦点分别为,,过作垂直于轴的直线与椭圆在第一象限交于点,若,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点关于轴的对称点在抛物线上,是否存在直线与椭圆交于,使得的中点落在直线上,并且与抛物线相切,若直线存在,求出的方程,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数()在同一半周期内的图象过点, , ,其中为坐标原点, 为函数图象的最高点, 为函数的图象与轴的正半轴的交点, 为等腰直角三角形.
(1)求的值;
(2)将绕原点按逆时针方向旋转角,得到,若点恰好落在曲线()上(如图所示),试判断点是否也落在曲线()上,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的长轴长是短轴长的倍,且过点.
(1)求椭圆的标准方程;
(2)若的顶点、在椭圆上, 所在的直线斜率为, 所在的直线斜率为,若,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某地区某种农产品的年产量x(单位:吨)对价格y(单位:千元/吨)和利润z的影响,对近五年该农产品的年产量和价格统计如下表:
x | 1 | 2 | 3 | 4 | 5 |
y | 7.0 | 6.5 | 5.5 | 3.8 | 2.2 |
(1)求y关于x的线性回归方程;
(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z取到最大值?(保留两位小数)
参考公式: ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=Asin(x+φ)(A>0, 的部分图象如图所示.
(I)设x∈(0, )且f(α)= ,求sin 2a的值;
(II)若x∈[]且g(x)=2λf(x)+cos(4x﹣)的最大值为,求实数λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,无穷数列满足 ,
(Ⅰ)若 ,求, , ;
(Ⅱ)若 ,且, , 成等比数列,求的值;
(Ⅲ)是否存在 ,使得 成等差数列?若存在,求出所有这样的;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com