精英家教网 > 高中数学 > 题目详情
设直线参数方程为
x=2+
t
2
y=3+
3
2
t
(t为参数),则它的斜截式方程为
 
分析:先利用消参法消去参数t,即可将直线的参数方程化成直线的普通方程.
解答:解:∵直线l的参数方程为
x=2+
t
2
y=3+
3
2
t
(t为参数),
∴消去参数t得y=
3
x+3-2
3

则它的斜截式方程为y=
3
x+3-2
3

故答案为:y=
3
x+3-2
3
点评:本题主要考查了直线的参数方程,以及直线的普通方程等基础知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线的极坐标方程为θ=
π
4
(ρ∈R)
,它与曲线
x=2+
5
cosθ
y=1+
5
sinθ
为参数)相交于两点A和B,求|AB|.
(2)在直角坐标系xOy中,直线L的参数方程为
x=3-
5
5
t
y=-2+
2
5
5
t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=4cosθ.设圆C与直线L交于点A、B.若点P的坐标为(3,-2),求|PA|+|PB|及|PA|•|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:在A、B、C、D四小题中只能选做2题,每小题10分,共20分.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,PA切⊙O于点A,D为PA的中点,过点D引割线交⊙O于B、C两点.求证:∠DPB=∠DCP.
B.选修4-2:矩阵与变换
设M=
.
10
02
.
,N=
.
1
2
0
01
.
,试求曲线y=sinx在矩阵MN变换下的曲线方程.
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的极坐标方程为ρ=
2
cos(θ+
π
4
)
,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
(t为参数),求直线l被圆C所截得的弦长.
D.选修4-5:不等式选讲
解不等式:|2x+1|-|x-4|<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π
3
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4:坐标系与参数方程
已知曲线C的极坐标方程是ρ=2,以极点为原点,极轴为x轴的正半轴建立平面直角 坐标系,直线l的参数方程为
x=2-
1
2
t
y=1+
3
2
t
(t为参数).
(I)写出直线l与曲线C的直角坐标系下的方程;
(II)设曲线C经过伸缩变换
x′=x
y′=2y
得到曲线C'设曲线C'上任一点为M(x,y),求
3
x+
1
2
y
的取值范围.

查看答案和解析>>

同步练习册答案