精英家教网 > 高中数学 > 题目详情
已知函数f(x)=alnx-x+
a+3
x
在定义域内无极值,则实数a的取值范围是
 
考点:函数在某点取得极值的条件
专题:计算题,导数的概念及应用
分析:求导数,根据f(x)在定义域内无极值,可得二次函数没有根,即可得出结论.
解答: 解:∵f(x)=alnx-x+
a+3
x

∴f′(x)=
a
x
-1-
a+3
x2
=
-x2+ax-(a+3)
x2
(x>0)
∵f(x)在定义域内无极值,
∴△=a2-4(a+3)≤0.
∴-2≤a≤6
故答案为-2≤a≤6.
点评:本题考查函数在某点取得极值的条件,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)的图象如图,则f(x)的解析式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=[2log4(2x)-(2a+1)]•log2x+3,x∈[
32
,8]
(1)若f(x)的最小值记为h(a),求h(a)的解析式;
(2)是否存在实数m,n同时满足以下条件:
①log3m>log3n>1;
②当h(a)的定义域为[n,m]时,值域为[n2,m2].若存在,求出m,n的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=k(x-
1
x
)-lnx,k∈R.
(Ⅰ)若f(x)与x轴相切于点(1,f(1),求f(1))的解析式;
(Ⅱ)若f(x)在其定义域内为单调函数,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m,n)重合,则m+n=(  )
A、
34
5
B、
36
5
C、
28
3
D、
32
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,-1),
b
=(3,x).若
a
b
=3,则x=(  )
A、6B、5C、4D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足(n+1)an,(n+2)an+1,n成等差数列,a1=-1,bn=(n+1)an-n+2,若log2(-bn)+3n≥k2-2k,对一切n∈N*都成立,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
A
2
sinx+
3
A
2
cosx,且f(
π
6
)=3.
(1)求函数f(x)的单调递增区间;
(2)若f(θ)-f(-θ)=
3
,θ∈(0,
π
2
),求f(
π
3
-θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(x-3) -
1
3
<(1+x) -
1
3
,求x的取值范围.

查看答案和解析>>

同步练习册答案