【题目】已知圆M:,设点B,C是直线l:上的两点,它们的横坐标分别是t,,P点的纵坐标为a且点P在线段BC上,过P点作圆M的切线PA,切点为A
若,,求直线PA的方程;
经过A,P,M三点的圆的圆心是D,
将表示成a的函数,并写出定义域.
求线段DO长的最小值.
科目:高中数学 来源: 题型:
【题目】已知函数,分别是定义在上的偶函数和奇函数,且.
(1)求函数,的解析式;
(2)若对任意,不等式恒成立,求实数的最大值;
(3)设,若函数与的图象有且只有一个公共点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax3-3ax,g(x)=bx2-ln x(a,b∈R),已知它们在x=1处的切线互相平行.
(1)求b的值;
(2)若函数且方程F(x)=a2有且仅有四个解,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积=,弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”指半径长与圆心到弦的距离之差。现有圆心角为,半径等于4米的弧田.下列说法不正确的是( )
A. “弦”米,“矢”米
B. 按照经验公式计算所得弧田面积()平方米
C. 按照弓形的面积计算实际面积为()平方米
D. 按照经验公式计算所得弧田面积比实际面积少算了大约0.9平方米(参考数据 )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某幼儿园雏鹰班的生活老师统计2018年上半年每个月的20日的昼夜温差,和患感冒的小朋友人数(/人)的数据如下:
温差 | ||||||
患感冒人数 | 8 | 11 | 14 | 20 | 23 | 26 |
其中,,.
(Ⅰ)请用相关系数加以说明是否可用线性回归模型拟合与的关系;
(Ⅱ)建立关于的回归方程(精确到),预测当昼夜温差升高时患感冒的小朋友的人数会有什么变化?(人数精确到整数)
参考数据:.参考公式:相关系数:,回归直线方程是, ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在边长为60 cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com