【题目】某超市计划销售某种食品,现邀请甲、乙两个商家进场试销10天.两个商家提供的返利方案如下:甲商家每天固定返利60元,且每卖出一件食品商家再返利3元;乙商家无固定返利,卖出30件以内(含30件)的食品,每件食品商家返利5元,超出30件的部分每件返利8元.经统计,两个商家的试销情况茎叶图如下:
(1)现从甲商家试销的10天中抽取两天,求这两天的销售量都小于30的概率;
(2)若将频率视作概率,回答以下问题:
① 记商家乙的日返利额为X(单位:元),求X的分布列和数学期望;
② 超市拟在甲、乙两个商家中选择一家长期销售,如果仅从日平均返利额的角度考虑,请利用所学的统计学知识为超市作出选择,并说明理由.
【答案】(1);(2)①见解析;②见解析.
【解析】试题分析:(1)结合组合知识,利用古典概型概率公式即可求两天的销售量都小于的概率;(2)① 的所有可能取值为: , , , , ,根据古典概型概率公式,求出各个随机变量对应的概率,从而可得的分布列,进而可得期望值;②先求出甲商家的日平均销售量,从而可得甲商家的日平均返利额,再由①得出乙商家的日平均返利额,比较返利额的大小可得结论.
试题解析:(1)记“抽取的两天销售量都小于30”为事件A,
则P(A)= =.
(2)设乙商家的日销售量为a,则
当a=28时,X=28×5=140;
当a=29时,X=29×5=145;
当a=30时,X=30×5=150;
当a=31时,X=30×5+1×8=158;
当a=32时,X=30×5+2×8=166;
所以X的所有可能取值为:140,145,150,158,166.
所以X的分布列为
X | 140 | 145 | 150 | 158 | 166 |
P |
所以EX=140×+145×+150×+158×+166×=152.8.
②依题意,甲商家的日平均销售量为:28×0.2+29×0.4+30×0.2+31×0.1+32×0.1=29.5
所以甲商家的日平均返利额为:60+29.5×3=148.5元.
由①得乙商家的日平均返利额为152.8元(>148.5元),
所以推荐该超市选择乙商家长期销售.
科目:高中数学 来源: 题型:
【题目】为了反映国民经济各行业对仓储物流业务的需求变化情况,以及重要商品库存变化的动向,中国物流与采购联合会和中储发展股份有限公司通过联合调查,制定了中国仓储指数.如图所示的折线图是2016年1月至2017年12月的中国仓储指数走势情况.
根据该折线图,下列结论正确的是
A. 2016年各月的仓储指数最大值是在3月份
B. 2017年1月至12月的仓储指数的中位数为54%
C. 2017年1月至4月的仓储指数比2016年同期波动性更大
D. 2017年11月的仓储指数较上月有所回落,显示出仓储业务活动仍然较为活跃,经济运行稳中向好
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知y=f(x)是定义在(-∞,+∞)上的奇函数,且在[0,+∞)上为增函数,
(1)求证:函数在(-∞,0)上也是增函数;
(2)如果f()=1,解不等式-1<f(2x+1)≤0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-4:坐标系与参数方程】
在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求曲线的极坐标方程和的直角坐标方程;
(Ⅱ)直线与曲线分别交于第一象限内的,两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表是20个国家和地区的二氧化碳排放总量及人均二氧化碳排放量.
国家和地区 | 排放总量/千吨 | 人均排放量/吨 | 国家和地区 | 排放总量/千吨 | 人均排放量/吨 | |
A | 10330000 | 7.4 | K | 480000 | 2.0 | |
B | 5300000 | 16.6 | L | 480000 | 7.5 | |
C | 3740000 | 7.3 | M | 470000 | 3.9 | |
D | 2070000 | 1.7 | N | 410000 | 5.3 | |
E | 1800000 | 12.6 | O | 390000 | 16.9 | |
F | 1360000 | 10.7 | P | 390000 | 6.4 | |
G | 840000 | 10.2 | Q | 370000 | 5.7 | |
H | 630000 | 12.7 | R | 330000 | 6.2 | |
I | 550000 | 15.7 | S | 320000 | 6.2 | |
J | 510000 | 2.6 | T | 490000 | 16.6 |
(1)这20个国家和地区人均二氧化碳排放量的中位数是多少?
(2)针对这20个国家和地区,请你找出二氧化碳排放总量较少的前15%的国家和地区.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若AC⊥BC,AC=BC=1,点P是△ABC内一点,则的取值范围是( )
A. (﹣,0) B. (0,) C. (﹣,) D. (﹣1,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“杨辉三角”是我国数学史上的一个伟大成就,是二项式系数在三角形中的一种几何排列.如图所示,去除所有为1的项,依此构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前56项和为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在岁到岁的人群中随机调查了人,并得到如图所示的频率分布直方图,在这人中不支持“延迟退休年龄政策”的人数与年龄的统计结果如图所示:
年龄 | 不支持“延迟退休年龄政策”的人数 |
(1)由频率分布直方图,估计这人年龄的平均数;
(2)根据以上统计数据填写下面的列联表,据此表,能否在犯错误的概率不超过的前提下,认为以岁为分界点的不同人群对“延迟退休年龄政策”的态度存在差异?
45岁以下 | 45岁以上 | 总计 | |
不支持 | |||
支持 | |||
总计 |
附:
参考数据:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com