分析 由条件利用诱导公式、正弦函数的周期性以及它的图象的对称性,求得它的周期、对称轴方程和对称中心.
解答 解:∵函数y=2sin($\frac{7π}{6}$-2x)=2sin(π+$\frac{π}{6}$-2x)=-2sin($\frac{π}{6}$-2x)=2sin(2x-$\frac{π}{6}$),
故它的周期是$\frac{2π}{2}$=π.
令2x-$\frac{π}{6}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{3}$,可得它的图象的对称轴方程为x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z.
令2x-$\frac{π}{6}$=kπ,求得x=$\frac{kπ}{2}$+$\frac{π}{12}$,可得它的图象的对称中心为($\frac{kπ}{2}$+$\frac{π}{12}$,0).
故答案为:π;x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z;($\frac{kπ}{2}$+$\frac{π}{12}$,0).
点评 本题主要考查诱导公式、正弦函数的周期性以及它的图象的对称性,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com