精英家教网 > 高中数学 > 题目详情
6.若A,B,C,D,E,F六个不同元素排成一列,要求A不排在两端,且B、C相邻,则不同的排法共有144种(用数字作答)

分析 把B,C看做一个整体,有2种方法;6个元素变成了5个,先在中间的3个位中选一个排上A,有A31=3种方法,其余的4个元素任意排,有A44种不同方法.根据分步计数原理求出所有不同的排法种数.

解答 解:由于B,C相邻,把B,C看做一个整体,有2种方法.这样,6个元素变成了5个.
先排A,由于A不排在两端,则A在中间的3个位子中,有A31=3种方法.
其余的4个元素任意排,有A44种不同方法,
故不同的排法有 2×3×A44=144种,
故答案为:144.

点评 本题主要考查排列、组合以及简单计数原理的应用,注意把特殊元素与位置优先排列,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知P是△ABC所在平面内一点,D为AB的中点,若2$\overrightarrow{PD}+\overrightarrow{PC}=(λ+1)\overrightarrow{PA}+\overrightarrow{PB}$,且△PBA与△PBC的面积相等,则实数λ的值为(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求证:$\frac{1+sin4θ-cos4θ}{1+sin4θ+cos4θ}$=tan2θ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$与$\overrightarrow{b}$夹角为120°求:
(1)($\overrightarrow{a}-2\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)
(2)|2$\overrightarrow{a}$-$\overrightarrow{b}$|
(3)$\overrightarrow{a}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合A={-2,-1,0,1},集合B={x|-1,1,2,3},则A∩B={-1,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若以O为极点,x轴正半轴为极轴,曲线C1的极坐标方程为:ρ2-4ρcosθ-4ρsinθ+6=0上的点到曲线C2的参数方程为:$\left\{\begin{array}{l}{x=-2-\sqrt{2}t}\\{y=3+\sqrt{2}t}\end{array}\right.$(t为参数)的距离的最小值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l1:x+my+8=0与l2:(m-3)x+4y+2m=0,当m为何值时,l1与l2平行.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过点(0,8)作曲线f(x)=x3-6x2+9x的切线,则这样的切线条数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,2asinA=(2sinB-$\sqrt{3}$sinC)b+(2sinC-$\sqrt{3}$sinB)c.
(1)求∠A;
(2)若a=2,b=2$\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

同步练习册答案