A. | $\frac{22}{7}$ | B. | $\frac{47}{15}$ | C. | $\frac{51}{16}$ | D. | $\frac{53}{17}$ |
分析 由试验结果知120对0~1之间的均匀随机数x,y,满足$\left\{\begin{array}{l}{0≤x<1}\\{0≤y<1}\end{array}\right.$,面积为1,两个数能与1构成钝角三角形三边的数对(x,y),满足x2+y2<1且$\left\{\begin{array}{l}{0≤x<1}\\{0≤y<1}\end{array}\right.$,x+y>1,面积为$\frac{π}{4}$-$\frac{1}{2}$,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,二者相等即可估计π的值.
解答 解:由题意,120对都小于l的正实数对(x,y),满足$\left\{\begin{array}{l}{0≤x<1}\\{0≤y<1}\end{array}\right.$,面积为1,
两个数能与1构成钝角三角形三边的数对(x,y),满足x2+y2<1且$\left\{\begin{array}{l}{0≤x<1}\\{0≤y<1}\end{array}\right.$,x+y>1,面积为$\frac{π}{4}$-$\frac{1}{2}$,
因为统计两数能与l构成钝角三角形三边的数对(x,y) 的个数m=34,
所以$\frac{34}{120}$=$\frac{π}{4}$-$\frac{1}{2}$,所以π=$\frac{47}{15}$.
故选B.
点评 本题考查了随机模拟法求圆周率的问题,也考查了几何概率的应用问题,是综合题.
科目:高中数学 来源: 题型:选择题
A. | 3和5 | B. | 4和6 | C. | 6和8 | D. | 5和7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (4,+∞) | B. | (-∞,4) | C. | (8,+∞) | D. | (-∞,8) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1:3 | B. | 2:3 | C. | 1:5 | D. | 2:5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com