精英家教网 > 高中数学 > 题目详情
20.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的普丰实验和查理斯实验,受其启发,我们也可以通过设计下面的实验来估计π的值,先请120名同学每人随机写下一个都小于1的正实数对(x,y),再统计两数能与1构成钝角三角形三边的数对(x,y)的个数m;最后在根据统计数m估计π的值,假设统计结果是m=34,那么可以估计π的值为(  )
A.$\frac{22}{7}$B.$\frac{47}{15}$C.$\frac{51}{16}$D.$\frac{53}{17}$

分析 由试验结果知120对0~1之间的均匀随机数x,y,满足$\left\{\begin{array}{l}{0≤x<1}\\{0≤y<1}\end{array}\right.$,面积为1,两个数能与1构成钝角三角形三边的数对(x,y),满足x2+y2<1且$\left\{\begin{array}{l}{0≤x<1}\\{0≤y<1}\end{array}\right.$,x+y>1,面积为$\frac{π}{4}$-$\frac{1}{2}$,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,二者相等即可估计π的值.

解答 解:由题意,120对都小于l的正实数对(x,y),满足$\left\{\begin{array}{l}{0≤x<1}\\{0≤y<1}\end{array}\right.$,面积为1,
两个数能与1构成钝角三角形三边的数对(x,y),满足x2+y2<1且$\left\{\begin{array}{l}{0≤x<1}\\{0≤y<1}\end{array}\right.$,x+y>1,面积为$\frac{π}{4}$-$\frac{1}{2}$,
因为统计两数能与l构成钝角三角形三边的数对(x,y) 的个数m=34,
所以$\frac{34}{120}$=$\frac{π}{4}$-$\frac{1}{2}$,所以π=$\frac{47}{15}$.
故选B.

点评 本题考查了随机模拟法求圆周率的问题,也考查了几何概率的应用问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.扇形的周长是20,当扇形的圆心角为2弧度时扇形的面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某三角形两边之差为2,它们的夹角正弦值为$\frac{4}{5}$,面积为14,那么这两边长分别是(  )
A.3和5B.4和6C.6和8D.5和7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的函数f(x)满足f(x)+f(-x)=2x2,且x∈[0,+∞)时f′(x)>2x恒成立,则不等式f(8-x)+16x<64+f(x)的解集为(  )
A.(4,+∞)B.(-∞,4)C.(8,+∞)D.(-∞,8)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果函数y=3cos(2x+φ)的图象关于点$({\frac{4π}{3},0})$,则|φ|的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=-sin3x-2sinx的最小值是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知0<a<2,证明:$\frac{1}{a}$+$\frac{4}{2-a}$≥$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知P是△ABC内一点,且$5\overrightarrow{AP}-2\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow 0$,则△PAB的面积与△ABC的面积之比等于(  )
A.1:3B.2:3C.1:5D.2:5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若一个圆柱的轴截面是一个面积为4的正方形,则该圆柱的表面积为(  )
A.B.C.$\frac{7π}{2}$D.

查看答案和解析>>

同步练习册答案