精英家教网 > 高中数学 > 题目详情
5.已知数列{an}满足${a_1}=1,{a_2}=1,{a_{n+2}}={a_n}+{a_{n+1}}(n∈{N^*})$,则a6=(  )
A.3B.5C.2D.8

分析 利用数列的递推关系式,逐步求解即可.

解答 解:数列{an}满足${a_1}=1,{a_2}=1,{a_{n+2}}={a_n}+{a_{n+1}}(n∈{N^*})$,则a3=a1+a2=2,
a4=a2+a3=3,
a5=a3+a4=5,
a6=a4+a5=8,
故选:D.

点评 本题考查数列的递推关系式的应用,数列项的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知中心在原点O,左焦点为F1(-1,0)的椭圆C的左顶点为A,上顶点为B,F1到直线AB的距离为$\frac{\sqrt{7}}{7}$b.
(1)求椭圆C的方程;
(2)若椭圆C1方程为:$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1(m>n>0),椭圆C2方程为:$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=3,若直线y=kx+b与两椭圆C2、C交于四点(依次为P、Q、R、S),且$\overrightarrow{PS}$+$\overrightarrow{RS}$=2$\overrightarrow{QS}$,原点到点E(k,b)的距离为$\frac{3}{2}$,求直线PS的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.化简:$\frac{\sqrt{1-2sin70°cos430°}}{sin250°+cos650°}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在(3-$\sqrt{x}$)n(n≥2且n∈N)展开式中x的系数为an,则$\frac{3}{{a}_{2}}$+$\frac{{3}^{2}}{{a}_{3}}$+$\frac{{3}^{3}}{{a}_{4}}$+…+$\frac{{3}^{2015}}{{a}_{2016}}$=(  )
A.$\frac{2015}{2016}$B.$\frac{2015}{1008}$C.$\frac{2015}{672}$D.$\frac{2015}{336}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示的“相邻塔”形立体建筑,已知P-OAC和Q-OBD是边长分别为a和$\frac{m}{a}({m是常数})$的两个正四面体,底面中AB与CD交于点O,试求出塔尖P,Q之间的距离关于边长a的函数,并求出a为多少时,塔尖P,Q之间的距离最短.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$满足$\left|\overrightarrow{a}+\overrightarrow{b}\right|=2\sqrt{3}$、$\left|\overrightarrow{a}-\overrightarrow{b}\right|=2$,则$\overrightarrow{a}•\overrightarrow{b}$=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数$f(x)=\left\{\begin{array}{l}1-|{x-1}|,x<2\\ \frac{1}{2}f(x-2),x≥2\end{array}\right.$,则方程xf(x)-1=0根的个数为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图所示,三棱柱ABC-A1B1C1中,AA1⊥BC,A1B⊥BB1,若AB=2,AC=$\sqrt{3}$,BC=$\sqrt{7}$,则下列结论正确的是(  )
A.:当AA1=$\frac{\sqrt{42}}{7}$时,三棱柱ABC-A1B1C1体积取得最大值,最大值为$\frac{3\sqrt{7}}{7}$
B.:当AA1=$\frac{6}{7}$时,三棱柱ABC-A1B1C1体积取得最大值,最大值为$\frac{3\sqrt{7}}{7}$
C.:当AA1=$\frac{\sqrt{42}}{7}$时,三棱柱ABC-A1B1C1体积取得最大值,最大值为$\frac{6}{7}$$\sqrt{7}$
D.:当AA1=$\frac{6}{7}$时,三棱柱ABC-A1B1C1体积取得最大值,最大值为$\frac{6}{7}$$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图所示,A、B是两个非空集合,定义A*B表示阴影部分集合,若集合A={x|y=$\sqrt{3x-{x^2}}$,x,y∈R},B={y|y=2x,x>0},则A*B=(  )
A.[0,+∞)B.[0,1]∪(3,+∞)C.[0,1)∪[3,+∞)D.(1,3]

查看答案和解析>>

同步练习册答案