精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,若存在实数x1 , x2 , x3 , x4满足f(x1)=f(x2)=f(x3)=f(x4),其中x1<x2<x3<x4 , 则x1x2x3x4取值范围是(
A.(60,96)
B.(45,72)
C.(30,48)
D.(15,24)

【答案】B
【解析】解:函数f(x)的图象如下图所示:

若满足f(x1)=f(x2)=f(x3)=f(x4),其中x1<x2<x3<x4

则0<x1<1,1<x1<3,

则log3x1=﹣log3x2,即log3x1+log3x2=log3x1x2=0,

则x1x2=1,

同时x3∈(3,6),x4∈(12,15),

∵x3,x4关于x=9对称,∴ =9,

则x3+x4=18,则x4=18﹣x3

则x1x2x3x4=x3x4=x3(18﹣x3)=﹣x32+18x3=﹣(x3﹣9)2+81,

∵x3∈(3,6),

∴x3x4∈(45,72),

即x1x2x3x4∈(45,72),

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=blnx+a(a>0,b>0)在x=1处的切线与圆(x﹣2)2+y2=4相交于A、B两点,并且弦长|AB|= 2 ,则 + 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数y=f(x)满足:①对于任意的x∈R,都有f(x+2)=f(x﹣2);②函数y=f(x+2)是偶函数;③当x∈(0,2]时,f(x)=ex ,a=f(﹣5),b=f( ).c=f( ),则a,b,c的大小关系是(
A.a<b<c
B.c<a<b
C.c<a<b
D.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 =(sin2ωx,cos2ωx), =(cosφ,sinφ),其中|φ|< ,ω>0,函数f(x)= 的图象在y轴右侧的第一个最高点(即函数取得最大值的点)为 ,在原点右侧与x轴的第一个交点为
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)在△ABC中,角A′B′C的对边分别是a′b′c′若f(C)=﹣1, ,且a+b=2 ,求边长c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了(
A.60里
B.48里
C.36里
D.24里

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1、F2分别是双曲线 =1(a>0,b>0)的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是(
A.(1,
B.( ,+∞)
C.( ,2)
D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx,g(x)= (x为实常数).
(1)当a=1时,求函数φ(x)=f(x)﹣g(x)在x∈[4,+∞)上的最小值;
(2)若方程e2fx=g(x)(其中e=2.71828…)在区间[ ]上有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2x+ ),将其图象向右平移 ,则所得图象的一条对称轴是(
A.x=
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的离心率为 ,若圆x2+y2=a2被直线x﹣y﹣ =0截得的弦长为2
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点A、B为动直线y=k(x﹣1),k≠0与椭圆C的两个交点,问:在x轴上是否存在定点M,使得 为定值?若存在,试求出点M的坐标和定值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案