精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若,求曲线在点处的切线方程;

2)若曲线与直线只有一个交点,求实数的取值范围.

【答案】1;(2.

【解析】

试题(1)求点处的切线方程,只要求出导数,则有切线方程为;(2)曲线与直线只有一个交点,说明关于的方程只有一个实根,不可能是根,因此方程可转化为方程只有一个实根,这样问题又转化为函数的图象与直线只有一个交点,因此只要研究函数的单调性,极值,函数值变化情况,作出简图就可得出结论.

试题解析:(1,所以切线方程为.

2)曲线与直线只有一个交点,等价于关于的方程只有一个实根.

显然,所以方程只有一个实根.

设函数,则.

为增函数,又.

所以当时,为增函数;

时,为减函数;

时,为增函数;

所以时取极小值.

又当趋向于时,趋向于正无穷;

又当趋向于负无穷时,趋向于负无穷;

又当趋向于正无穷时,趋向于正无穷.所以图象大致如图所示:

所以方程只有一个实根时,实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某单位的食堂中,食堂每天以元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂某天购进了80斤米粉,以(单位:斤)(其中)表示米粉的需求量, (单位:元)表示利润.

(Ⅰ)计算当天米粉需求量的平均数,并直接写出需求量的众数和中位数;

(Ⅱ) 表示为的函数;

Ⅲ)根据直方图估计该天食堂利润不少于760元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高考复习经过二轮“见多识广”之后,为了研究考前“限时抢分”强化训练次数与答题正确率﹪的关系,对某校高三某班学生进行了关注统计,得到如下数据:

1

2

3

4

20

30

50

60

(1)求关于的线性回归方程,并预测答题正确率是100﹪的强化训练次数;

(2)若用表示统计数据的“强化均值”(精确到整数),若“强化均值”的标准差在区间内,则强化训练有效,请问这个班的强化训练是否有效?

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

样本数据的标准差为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,若对于任意实数对,存在,使成立,则称集合垂直对点集;下列四个集合中,是垂直对点集的是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知sinC+cosC=1﹣sin

(1)求sinC的值;

(2)若△ABC的外接圆面积为(4+)π,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业开发生产了一种大型电子产品,生产这种产品的年固定成本为2500万元,每生产百件,需另投入成本(单位:万元),当年产量不足30百件时,;当年产量不小于30百件时,;若每件电子产品的售价为5万元,通过市场分析,该企业生产的电子产品能全部销售完.

1)求年利润(万元)关于年产量(百件)的函数关系式;

2)年产量为多少百件时,该企业在这一电子产品的生产中获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数有两个不相等的正零点,求的取值范围;

(2)若函数上的最小值为-3,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中, 平面经过,直线则平面截该正方体所得截面的面积为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为,直线的参数方程为为参数),直线和圆交于两点.

(1)求圆心的极坐标;

(2)直线轴的交点为,求.

查看答案和解析>>

同步练习册答案