精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2(log2x)2-2a(log2x)+b,当x=
1
2
时有最小值-8,
(1)求a,b的值;     
(2)当x∈[
1
4
,8]时,求f(x)的最值.
考点:函数的最值及其几何意义
专题:函数的性质及应用
分析:(1)利用换元法将函数转化为一元二次函数,利用一元二次函数的性质建立条件关系即可求a,b的值;     
(2)求出当x∈[
1
4
,8]时,t的取值范围,根据一元二次函数的单调性的性质即可求f(x)的最值.
解答: 解:(I)令t=log2x,则t∈R,得y=2t2-2at+b,
当x=
1
2
时有最小值-8,即此时t=log2
1
2
=-1,
当t=
a
2
=-1
时,函数有最小值,解得a=-2,
此时函数的最小值为b-
a2
2
=b-2=-8,
解得b=-6,即a=-2,b=-6.
(II)∵x∈[
1
4
,8]时,t=log2x∈[-2,3],
∴当t=-1时,函数f(x)取得最小值为-8,
当t=3时,函数f(x)取得最大值为24.
点评:本题主要考查复合函数单调性和最值的求解,利用换元法,结合一元二次函数的单调性的性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)对任意x∈R有f(x+1)=-
1
f(x)
,且当x∈[-1,1]时,f(x)=x2+1,则以下命题正确的是:
①函数y=f(x)是周期为2的偶函数;
②函数y=f(x)在[2,3]单调递增;
③函数y=f(x)+
4
f(x)
的最大值是4;
④若关于x的方程[f(x)]2-f(x)-m=0有实根,则实数m的范围是[0,2];
⑤当x1,x2∈[1,3]时,f(
x1+x2
2
)≥
f(x1)+f(x2)
2

其中真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在边长为1正方体ABCD-A1B1C1D1中,以正方体的三条棱所在直线为轴建立空间直角坐标系Oxyz,
(I)若点P在线段BD1上,且满足3|BP|=|BD1|,试写出点P的坐标并写出P关于纵坐标轴y轴的对称点P′的坐标;
(Ⅱ)在线段C1D上找一点M,使得点M到点P的距离最小,求出点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x、y满足(x-1)2+y2=1,则S=x2+y2+2x-2y+2的最小值是(  )
A、6-2
5
B、
5
-1
C、
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象在y轴上的截距为1,对于任意的x∈R,都有f(x+1)=f(x)+2x-2恒成立.
(I)求y=f(x)的解析式;
(Ⅱ)设集合A={f(x)|n<x≤n+1,f(x)∈Z,n∈N*},记A中的元素个数为an.试求a1,a2和数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F(0,1),一动圆过点F且与圆x2+(y+1)2=8内切.
(Ⅰ)求动圆圆心的轨迹C的方程;
(Ⅱ)设点A(a,0),点P为曲线C上任一点,求点A到点P距离的最大值d(用a表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1
x=2cosθ
y=
3
sinθ
(θ为参数),直线C2
x=1-2t
y=2t
(t为参数)
(1)将曲线C1与C2的参数方程化为普通方程.
(2)若曲线C1与C2交于A,B两点,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=8,a4=2,且满足:an+2-2an+1+an=0(n∈N*),
(1)求数列{an}的通项公式;
(2)设bn=
1
n(12-an)
(n∈N*),求证:Sn=b1+b2+…+bn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的定义域和值域
(1)y=
2+x
3-x

(2)y=x-
2x+1

查看答案和解析>>

同步练习册答案