A. | [-5,$\frac{5}{3}$] | B. | [-5,0)∪[$\frac{5}{3}$,+∞) | C. | (-∞,-5]∪[$\frac{5}{3}$,+∞) | D. | [-5,0)∪(0,$\frac{5}{3}$] |
分析 作出不等式组对应的平面区域,利用直线斜率的几何意义,结合数形结合进行求解即可.
解答 解:作出不等式组对应的平面区域如图:
$\frac{y+2}{x-2}$的几何意义是区域内的点到定点D(2,-2)的斜率,
由$\left\{\begin{array}{l}{y-3=0}\\{3x+y-6=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即A(1,3),
由$\left\{\begin{array}{l}{y-3=0}\\{x-y-2=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=5}\\{y=3}\end{array}\right.$,即B(5,3),
则AD的斜率k=$\frac{3+2}{1-2}$=-5,
BD的斜率k=$\frac{3+2}{5-2}$=$\frac{5}{3}$,
则$\frac{y+2}{x-2}$的取值范围是k≥$\frac{5}{3}$或k≤-5,
即(-∞,-5]∪[$\frac{5}{3}$,+∞),
故选:C
点评 本题主要考查线性规划的应用,利用直线斜率的几何意义是解决本题的关键.
科目:高中数学 来源: 题型:选择题
A. | 大前提错导致结论错 | B. | 小前提错导致结论错 | ||
C. | 推理形式错导致结论错 | D. | 大前提和小前提错导致结论错 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
A. | (4,5.5) | B. | (4,5) | C. | (5,5) | D. | (6,7) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,+∞) | B. | (-∞,-2) | C. | (2,+∞) | D. | (-∞,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-2,+∞) | B. | (-2,-1) | C. | (-1,1) | D. | (1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com