精英家教网 > 高中数学 > 题目详情
(2013•许昌三模)一个几何体的三视图如图所示,则该几何体的表面积为(  )
分析:由几何体的三视图可知,该几何体是长方体中间挖去一个圆柱体,根据数据计算表面积即可.
解答:解:由几何体的三视图可知,该几何体是一组合体由几何体的三视图可知,该几何体是长方体中间挖去一个圆柱体.表面积应为长方体表面积减去圆柱底面积,再加上圆柱侧面积.
长方体长宽高分别为4,3,1,其表面积为(4×3+4×1+3×1)×2=38
圆柱底面半径为1,高为1
圆柱底面积为2×π×12=2π,侧面积为2π×1×1=2π
所以所求的表面积为38-2π+2π=38
故选D
点评:本题考查由三视图求几何体的表面积,考查由三视图还原几何体直观图,考查柱体的表面积公式,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•许昌三模)已知f(x)=x3+ax2-a2x+2.
(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1)处的切线方程;
(Ⅱ)若a≠0 求函数f(x)的单调区间;
(Ⅲ)若不等式2xlnx≤f′(x)+a2+1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)已知圆C的方程为x2+y2=4,过点M(2,4)作圆C的两条切线,切点分别为A,B,直线AB恰好经过椭圆T:
x2
a2
+
y2
b2
=1(a>b>0)
的右顶点和上顶点.
(1)求椭圆T的方程;
(2)已知直线l与椭圆T相交于P,Q两不同点,直线l方程为y=kx+
3
(k>0)
,O为坐标原点,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)如图,多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AB=CD=1,AC=
3
,AD=DE=2
,G为AD的中点.
(1)求证;AC⊥CE;
(2)在线段CE上找一点F,使得BF∥平面ACD,并给予证明;
(3)求三棱锥VG-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)己知集合M={(x,y)|x2+2y2=3},N={(x,y)|y=mx+b}.若对所有m∈R,均有M∩N≠∅,则b的取值范同是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)设向量
a
=(
3
sinθ+cosθ+1,1),
b
=(1,1),θ∈[
π
3
3
],m是向量
a
 在向量
b
向上的投影,则m的最大值是(  )

查看答案和解析>>

同步练习册答案