(本题满分12分)
两条互相平行的直线分别过点A(6,2)和B(-3,-1),并且各自绕着A,B旋转,如果两条平行直线间的距离为d.
求:1)d的变化范围;
2)当d取最大值时两条直线的方程.
(1) (0,3].(2) 3x+y-20=0和3x+y+10=0.
【解析】(1)两直线的最大距离为直线与线段AB垂直时,距离最大,最大值为|AB|=.所以d的变化范围为.
(2)由于当d最大时,AB与直线垂直,所以可以利用AB的斜率求出直线的斜率,进而求出其直线方程.
(1)方法一:①当两条直线的斜率不存在时,即两直线分别为x=6和x=-3,则它们之间的距离为9. ………………2分
②当两条直线的斜率存在时,设这两条直线方程为
l1:y-2=k(x-6),l2:y+1=k(x+3),
即l1:kx-y-6k+2=0,l2:kx-y+3k-1=0, ………………4分
∴d==. ………………6分
即(81-d2)k2-54k+9-d2=0. ………………8分
∵k∈R,且d≠9,d>0,
∴Δ=(-54)2-4(81-d2)(9-d2)≥0,即0<d≤3且d≠9. ………………12分
综合①②可知,所求d的变化范围为(0,3].
方法二:如图所示,显然有0<d≤|AB|.
而|AB|==3.
故所求的d的变化范围为(0,3].
(2)由图可知,当d取最大值时,两直线垂直于AB.
而kAB==,
∴所求直线的斜率为-3. 故所求的直线方程分别为
y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0.
科目:高中数学 来源: 题型:
π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数(,为常数),且方程有两个实根为.
(1)求的解析式;
(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角中,四边形是边长为的正方形,,为上的点,且⊥平面
(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com