精英家教网 > 高中数学 > 题目详情

【题目】已知命题方程表示焦点在轴上的椭圆;命题方程表示的曲线是双曲线.

(1)若“”为真命题,求实数的取值范围;

(2)若“”为假命题、且“”为真命题,求实数的取值范围.

【答案】(1) 的取值范围为;(2) 实数的取值范围为.

【解析】试题分析

先求出当命题、命题分别为真命题时的取值范围.(1)由“”为真命题,可得均为真命题,由此得到关于的不等式组,解不等式组可得结果.(2)由“”为假命题、且“”为真命题,则一真一假,分类讨论可得的取值范围.

试题解析

(1)若为真,即方程表示焦点在轴上的椭圆,可得

为真,即方程表示的曲线是双曲线,

可得

解得

∵“”为真命题,则均为真命题,

,解得

∴实数的取值范围为

(2)若“”为假命题、且“”为真命题,则一真一假,

①若假,则,解得

②若真,则,解得

综上

∴实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法中错误的是( )

A. 先把高二年级的2000名学生编号为1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为,然后抽取编号为 的学生,这样的抽样方法是系统抽样法

B. 线性回归直线一定过样本中心点

C. 若两个随机变量的线性相关性越强,则相关系数的值越接近于1

D. 若一组数据1、、3的平均数是2,则该组数据的方差是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数f(x)=sinx+ cosx(x∈R),先将y=f(x)的图象上所有点的横坐标缩短到原来的 倍(纵坐标不变),再将得到的图象上所有点向右平行移动θ(θ>0)个单位长度,得到的图象关于直线x= 对称,则θ的最小值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本万元,每生产(百辆),需另投入成本万元,且.由市场调研知,每辆车售价万元,且全年内生产的车辆当年能全部销售完.

(1)求出2018年的利润(万元)关于年产量(百辆)的函数关系式;(利润=销售额-成本)

(2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的右焦点为F(1,0),且点P(1, )在椭圆C上,O为坐标原点.
(1)求椭圆C的标准方程;
(2)设过定点T(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角,求直线l的斜率k的取值范围;
(3)过椭圆C1 + =1上异于其顶点的任一点P,作圆O:x2+y2= 的两条切线,切点分别为M,N(M,N不在坐标轴上),若直线MN在x轴、y轴上的截距分别为m、n,证明: + 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,左、右顶点分别为,经过点且斜率为的直线与椭圆交于两点.

(1)求椭圆的方程;

(2)记的面积分别为,求关于的表达式,并求出当为何值时有最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)若函数的单调递减区间为,求函数的图像在点处的切线方程;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,则输出S的值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为 (φ为参数,0≤φ≤π),曲线C2的参数方程为 (t为参数).
(1)求C1的普通方程并指出它的轨迹;
(2)以O为极点,x轴的非负半轴为极轴建立极坐标系,射线OM:θ= 与半圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

同步练习册答案