精英家教网 > 高中数学 > 题目详情
用数学归纳法证明不等式++…+(n>1且n∈N)时,在证明n=k+1这一步时,需要证明的不等式是( )
A.++…+
B.++…++
C.++…++
D.++…+++
【答案】分析:把不等式++…+  中的n换成k+1,即得所求.
解答:解:当n=k+1时,不等式++…+
即 +
故选 D.
点评:本题考查数学归纳法,体现了换元的数学思想,注意式子的结构特征,特别是首项和末项.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用数学归纳法证明不等式:
1
n
+
1
n+1
+
1
n+2
+…+
1
n2
>1(n∈N*且n>1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(n)=1+
1
2
+
1
3
+…+
1
n
 (n∈N*),用数学归纳法证明不等式f(2n)>
n
2
时,f(2k+1)比f(2k)多的项数是
2k
2k

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明不等式
1
n+1
+
1
n+2
+…+
1
n+n
13
24
的过程中,由“k推导k+1”时,不等式的左边增加了(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明不等式1+
1
2
+
1
4
+…+
1
2n-1
127
64
(n∈N*)成立,其初始值至少应取
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明不等式2n>n2时,第一步需要验证n0=(  )时,不等式成立.

查看答案和解析>>

同步练习册答案