精英家教网 > 高中数学 > 题目详情
17.在平面直角坐标系xoy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=4-2t}\end{array}\right.$(参数t∈R),同时,在以坐标原点为极点,x轴的正半轴为极轴建立的极坐标系中,圆C的极坐标方程为ρ=4cosθ(θ为参数)
(1)求圆C的直角坐标方程.
(2)求直线l被圆C所截得的弦长.

分析 (1)利用极坐标与直角坐标互化,求解圆C的直角坐标方程.
(2)求出直线的普通方程,然后求出圆心到直线的距离,利用垂径定理求解即可.

解答 解:(1)圆C的极坐标方程为ρ=4cosθ(θ为参数)
可得ρ2=4ρcosθ,可得圆的普通方程为:x2+y2=4x,即(x-2)2+y2=4.
(2)直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=4-2t}\end{array}\right.$(参数t∈R),消去参数t,可得2x+y=6.
圆的圆心(2,0),半径为:2,圆心到直线的距离为:$\frac{|4-6|}{\sqrt{5}}$=$\frac{2}{\sqrt{5}}$,
直线l被圆C所截得的弦长:2$\sqrt{{2}^{2}-{(\frac{2}{\sqrt{5}})}^{2}}$=$2\sqrt{4-\frac{4}{5}}$=$\frac{8\sqrt{5}}{5}$.

点评 本题考查参数方程以及极坐标方程与普通方程的互化,直线与圆的位置关系的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若平面α∥平面β,l?α,则l与β的位置关系是(  )
A.l与β相交B.l与β平行C.l在β内D.无法判定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.命题“?x>0,x2-1<0”的否定是?x>0,x2-1≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,直线AC1与平面BCC1B1所成角的余弦值等于(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{10}}{5}$C.$\frac{\sqrt{5}}{4}$D.$\frac{\sqrt{10}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设集合A={x|-2≤x≤5},B={x|x2-3mx+2m2-m-1<0}.
(1)当x∈Z时,求A的非空真子集的个数;
(2)若A?B,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=sin($\frac{π}{4}$+x)sin($\frac{π}{4}$-x)+$\sqrt{3}$sinxcosx(x∈R).
(1)若f(α)=$\frac{1}{3}$,且α∈(-$\frac{π}{2}$,0),求sin(2α)的值;
(2)在△ABC中,若f($\frac{A}{2}$)=1,求sinB+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.四棱台的两底边长分别为1cm,2cm,高是1cm,它的侧面积为(  )
A.6cm2B.$\frac{{3\sqrt{5}}}{4}$cm2C.$\frac{2}{3}$$\sqrt{3}$cm2D.3$\sqrt{5}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若集合A={x|x2+x-6=0},B={x2+x+a=0},且A∩B=B,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.一个空间几何体的三视图如图所示,根据图中数据:
(1)画出该几何体的直观图;
(2)求该几何体的表面积;
(3)求该几何体的体积.

查看答案和解析>>

同步练习册答案