精英家教网 > 高中数学 > 题目详情
12.如图所示,正方形ABCD中,E、F、G分别是AB、CD、AD的中点,将ABCD沿EF折起,使FG⊥BG.
(Ⅰ)证明:EB⊥平面AEFD;
(Ⅱ)求二面角G-BF-E的余弦值.

分析 (Ⅰ)设正方体的棱长为2,证明EF⊥面AEB.EB⊥AE,推出EB⊥面AEFB.
(Ⅱ)取EF的中点H,作HO⊥BF,垂足为O,连接GO,说明∠GOH就是所求二面角G-BF-E的平面角,在Rt△GHO中,求解二面角G-BF-E的余弦值.

解答 (Ⅰ)证明:设正方体的棱长为2,
在Rt△BGF中,$GF=\sqrt{2},BF=\sqrt{5}$
所以$GB=\sqrt{3}$…(2分)
∵EF⊥AE,EF⊥EB,∴EF⊥面AEB.
∵AD∥EF,∴AD⊥面AEB,∴AD⊥AB
所以在Rt△BGF中,得$AB=\sqrt{2}$…(5分)
在△AEB中,又AE=BE=1∴EB⊥AE
又EF⊥EB∴EB⊥面AEFB…(7分)
(Ⅱ)解:取EF的中点H,则GH⊥EF,由(Ⅰ)知,EB⊥面AEFB,
所以面EFCB⊥面AEFB,所以GH⊥面EFCB,
作HO⊥BF,垂足为O,连接GO,由三垂线定理知,GO⊥BF,
所以∠GOH就是所求二面角G-BF-E的平面角.…(11分)
在Rt△GHO中,GH=1,$HO=\frac{1}{{\sqrt{5}}}$,
所以$GO=\frac{{\sqrt{6}}}{{\sqrt{5}}}$,所以$cos∠GOH=\frac{HO}{GO}=\frac{{\sqrt{6}}}{6}$
所以二面角G-BF-E的余弦值为$\frac{{\sqrt{6}}}{6}$.…(15分)

点评 本题考查直线与平面垂直的判断,二面角的平面角的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若函数f(x)满足$f(x)+2f(\frac{1}{x})={log_2}x$,则f(2)的值(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知圆锥高为h,底面圆半径、锥高、母线长构成等比数列,则圆锥的侧面积是(  )
A.$\frac{1}{3}π{h^2}$B.$\frac{1}{2}π{h^2}$C.πh2D.2πh2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=${log_{0.5}}(4-3x-{x^2})$的递增区间是$(-\frac{3}{2},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动,则直线D1E与A1D所成角的大小是90°,若D1E⊥EC,则AE=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.用导数求单调区间
f(x)=$\frac{{x}^{2}+3x+1}{{x}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=2x,若函数g(x)的图象与f(x)的图象关于x轴对称,则g(x)=-2x;把函数f(x)的图象向左移1个单位,向下移4个单位后,所得函数的解析式为y=2x+1-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.定义在R上的偶函数在区间(-∞,0]上单调递增,解不等式:f(a+1)<f(a2+2a+1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=1g(3x-x2)的单调增区间为(0,$\frac{3}{2}$).

查看答案和解析>>

同步练习册答案