分析 (Ⅰ)设正方体的棱长为2,证明EF⊥面AEB.EB⊥AE,推出EB⊥面AEFB.
(Ⅱ)取EF的中点H,作HO⊥BF,垂足为O,连接GO,说明∠GOH就是所求二面角G-BF-E的平面角,在Rt△GHO中,求解二面角G-BF-E的余弦值.
解答 (Ⅰ)证明:设正方体的棱长为2,
在Rt△BGF中,$GF=\sqrt{2},BF=\sqrt{5}$
所以$GB=\sqrt{3}$…(2分)
∵EF⊥AE,EF⊥EB,∴EF⊥面AEB.
∵AD∥EF,∴AD⊥面AEB,∴AD⊥AB
所以在Rt△BGF中,得$AB=\sqrt{2}$…(5分)
在△AEB中,又AE=BE=1∴EB⊥AE
又EF⊥EB∴EB⊥面AEFB…(7分)
(Ⅱ)解:取EF的中点H,则GH⊥EF,由(Ⅰ)知,EB⊥面AEFB,
所以面EFCB⊥面AEFB,所以GH⊥面EFCB,
作HO⊥BF,垂足为O,连接GO,由三垂线定理知,GO⊥BF,
所以∠GOH就是所求二面角G-BF-E的平面角.…(11分)
在Rt△GHO中,GH=1,$HO=\frac{1}{{\sqrt{5}}}$,
所以$GO=\frac{{\sqrt{6}}}{{\sqrt{5}}}$,所以$cos∠GOH=\frac{HO}{GO}=\frac{{\sqrt{6}}}{6}$
所以二面角G-BF-E的余弦值为$\frac{{\sqrt{6}}}{6}$.…(15分)
点评 本题考查直线与平面垂直的判断,二面角的平面角的求法,考查空间想象能力以及计算能力.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{3}π{h^2}$ | B. | $\frac{1}{2}π{h^2}$ | C. | πh2 | D. | 2πh2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com