精英家教网 > 高中数学 > 题目详情
15.已知${(\sqrt{x}-\frac{2}{x^2})^n}(n∈{N^*})$的展开式中第五项的系数与第三项的系数之比是10:1
(1)求展开式中各项系数的和
(2)求展开式中含${x^{\frac{3}{2}}}$的项
(3)求展开式中系数最大的项和二项式系数最大的项.

分析 由条件求得n=8,令x=1,可得展开式的各项系数的和.再利用通项公式求得展开式中含${x^{\frac{3}{2}}}$的项,以及展开式中系数最大的项和二项式系数最大的项.

解答 解:∵${(\sqrt{x}-\frac{2}{x^2})^n}(n∈{N^*})$的展开式中第五项的系数与第三项的系数之比是10:1,即 $\frac{{C}_{n}^{4}{•(-2)}^{4}}{{C}_{n}^{2}{•(-2)}^{2}}$=10,
求得n=8,
∴${(\sqrt{x}-\frac{2}{{x}^{2}})}^{n}$=${(\sqrt{x}-\frac{2}{{x}^{2}})}^{8}$.
(1)令x=1,可得展开式中各项系数的和为1.
(2)求得它的通项公式为 Tr+1=${C}_{8}^{r}$•(-2)r•${x}^{4-\frac{5r}{2}}$,令4-$\frac{5r}{2}$=$\frac{3}{2}$,求得r=1,故展开式中含${x^{\frac{3}{2}}}$的项为T2=${C}_{8}^{1}$•(-2)•${x^{\frac{3}{2}}}$=-16${x^{\frac{3}{2}}}$.
(3)根据它的通项公式为 Tr+1=${C}_{8}^{r}$•(-2)r•${x}^{4-\frac{5r}{2}}$,可得二项式系数最大的项为T5=${C}_{8}^{4}$•(-2)4•x-6=1120x-6
检验可得展开式中系数最大的项为T7=${C}_{8}^{6}$•(-2)6•x-11

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.二次函数y=ax2+ax+2(a>0)在R上的最小值为f(a)
(1)写出f(a)的解析式
(2)证明:f(a)在[1,5]上递减.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l经过点(0,-2),($\sqrt{3}$,1).
(1)求直线l的方程;
(2)求直线l与两坐标轴围成三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.
(1)写出该抛物线的标准方程及其准线方程;
(2)当直线PA与PB的斜率存在且倾斜角互补时,求y1+y2的值及直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设D、E、F分别是△ABC的三边BC、CA、AB上的点,且$\overrightarrow{DC}$=2$\overrightarrow{BD}$,$\overrightarrow{CE}$=2$\overrightarrow{EA}$,$\overrightarrow{AF}$=2$\overrightarrow{FB}$,则$\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}$与$\overrightarrow{BC}$(  )
A.互相垂直B.同向平行
C.反向平行D.既不平行也不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.直棱柱ABCD-A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2,侧棱长为1.
(1)建立适当的空间直角坐标系,并写出点A、C、B1的坐标.
(2)判断△ACB1是否为直角三角形?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=x2+2x-$\frac{{2}^{x}-4}{3}$的零点个数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC的三内角A,B,C所对三边分别为a,b,c,且sin(A-$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$.
(1)求tanA的值;
(2)若△ABC的面积S=24,b=10,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.y=2sin(x-$\frac{π}{3}$),x∈[0,π],
当x=$\frac{5π}{6}$时,y取最大值2,
当x=0时,y取最小值-$\sqrt{3}$.

查看答案和解析>>

同步练习册答案