精英家教网 > 高中数学 > 题目详情
13.设Sn是数列的前n项和,已知a1=3,an+1=2Sn+3(n∈N*).
(1)求数列{an}的通项公式;
(2)令bn=(2n-1)an,求数列{bn}的前n项和Tn

分析 (1)利用数列的递推关系式推出数列是等比数列,然后求解通项公式.
(2)化简数列的通项公式,利用错位相减法求和,求解即可.

解答 解:(1)当n≥2时,由an+1=2Sn+3,得an=2Sn-1+3,(1分)
两式相减,得an+1-an=2sn-2sn-1=2an,∴an+1=3an,$\frac{{a}_{n+1}}{{a}_{n}}=3$,(3分)
当n=1时,a1=3,a2=2S1+3=9,则$\frac{{a}_{2}}{{a}_{1}}=3$.
∴数列{an}是以3为首项,3 为公比的等比数列,(5分)
∴an=3n.(6分)
(2)由(1)得bn=(2n-1)an=(2n-1)3n
∴Tn=1×3+3×32+5×33+…+(2n-1)3n
3Tn=1×32+3×33+5×34+…+(2n-1)3n+1
错位相减得:-2Tn=1×3+2×32+2×33+…+2×3n-(2n-1)3n+1,(9分)
=-6-(2n-2)3n+1                      (11分)
∴${T_n}=(n-1)×{3^{n+1}}+3$.           (12分)

点评 本题考查数列的递推关系式定义域,通项公式的求法,数列求和的方法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2+$\frac{a}{x}$(x≠0,a∈R)
(1)当a=0时,判断函数f(x)的奇偶性;
(2)若f(x)在区间[2,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.二手车经销商小王对其所经营的某一型号二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万元/辆)进行整理,得到如下的对应数据:
使用年数246810
售价16139.574.5
(1)若这两个变量呈线性相关关系,试求y关于x的回归直线方程$\hat y=\hat bx+\hat a$;
(2)已知小王只收购使用年限不超过10年的二手车,且每辆该型号汽车的收购价格为ω=0.03x2-1.81x+16.2万元,根据(1)中所求的回归方程,预测x为何值时,小王销售一辆该型号汽车所获得的利润L(x)最大?
(销售一辆该型号汽车的利润=销售价格-收购价格)
参考公式:$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,以原点为圆心,椭圆的短半轴长为半径的圆与直线$\sqrt{7}$x-$\sqrt{5}$y+12=0相切.求椭圆C的方程;
(2)已知⊙A1:(x+2)2+y2=12和点A2(2,0),求过点A2且与⊙A1相切的动圆圆心P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个棱长为4的正方体涂上红色后,将其切成棱长为1的小正方体,置于一密闭容器搅拌均匀,从中任取一个,则取到两面涂红色的小正方体的概率为(  )
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{8}{27}$D.$\frac{12}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a=cos61°•cos127°+cos29°•cos37°,$b=\frac{{2tan{{13}°}}}{{1+{{tan}^2}{{13}°}}}$,$c=\sqrt{\frac{{1-cos{{50}°}}}{2}}$,则a,b,c的大小关系是(  )
A.a<b<cB.a>b>cC.c>a>bD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)是定义在[0,+∞)上的增函数,则满足不等式f(2x-1)<f($\frac{1}{3}$)的实数x的取值范围是(  )
A.(-∞,$\frac{2}{3}$)B.[$\frac{1}{3}$,$\frac{2}{3}$)C.($\frac{1}{2}$,+∞)D.[$\frac{1}{2}$,$\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x>0,y>0,且满足x+y=1,则$\frac{2}{x}$+$\frac{x}{y}$的最小值为2+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若实数a>b>1,且logab+logba=$\frac{5}{2}$,则logab=$\frac{1}{2}$;$\frac{a}{{b}^{2}}$=1.

查看答案和解析>>

同步练习册答案