【题目】已知圆锥的顶点为,底面圆心为,半径为.
(1)设圆锥的母线长为,求圆锥的体积;
(2)设,、是底面半径,且,为线段的中点,如图.求异面直线与所成的角的大小.
科目:高中数学 来源: 题型:
【题目】在一项自“一带一路”沿线20国青年参与的评选中“高铁”、“支付宝”、“共享单车”和“网购”被称作中国“新四大发明”,曾以古代“四大发明”推动世界进步的中国,正再次以科技创新向世界展示自己的发展理念.某班假期分为四个社会实践活动小组,分别对“新四大发明”对人们生活的影响进行调查.于开学进行交流报告会.四个小组随机排序,则“支付宝”小组和“网购”小组不相邻的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,底面,且为正三角形,,为的中点.
(1)求证:直线平面;
(2)求三棱锥的体积;
(3)三棱柱的顶点都在一个球面上,求该球的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象经过点,且在区间上单调递减,在上单调递增.
(Ⅰ)证明;
(Ⅱ)求的解析式;
(Ⅲ)若对于任意的,,不等式恒成立,试问:这样的是否存在,若存在,请求出的范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《续古摘奇算法》(杨辉)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入3×3的方格中,使得每一行,每一列及对角线上的三个数的和都相等(如图所示),我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么不同的三阶幻方的个数是( )
4 | 9 | 2 |
3 | 5 | 7 |
8 | 1 | 6 |
A.9B.8C.6D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆经过为坐标原点,线段的中点在圆上.
(1)求的方程;
(2)直线不过曲线的右焦点,与交于两点,且与圆相切,切点在第一象限, 的周长是否为定值?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某市准备在道路EF的一侧修建一条运动比赛道,赛道的前一部分为曲线段FBC.该曲线段是函数时的图象,且图象的最高点为B赛道的中间部分为长千米的直线跑道CD,且CD∥EF;赛道的后一部分是以为圆心的一段圆弧DE.
(1)求的值和∠DOE的大小;
(2)若要在圆弧赛道所对应的扇形ODE区域内建一个“矩形草坪”,矩形的一边在道路EF上,一个顶点在半径OD上,另外一个顶点P在圆弧DE上,求“矩形草坪”面积的最大值,并求此时P点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,.
(1)若函数f(x)在处有极值,求函数f(x)的最大值;
(2)是否存在实数b,使得关于x的不等式在上恒成立?若存在,求出b的取值范围;若不存在,说明理由;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com