精英家教网 > 高中数学 > 题目详情

【题目】已知α,β∈( ,π),sin(α+β)=﹣ ,sin(β﹣ )= ,则cos(α+ )=(
A.
B.
C.﹣
D.﹣

【答案】C
【解析】解:∵α,β∈( ,π),
∴α+β∈( ,2π),β﹣ ∈( ),
∵sin(α+β)=﹣ ,sin(β﹣ )=
∴cos(α+β)= ,cos(β﹣ )=﹣
则cos(α+ )=cos[(α+β)﹣(β﹣ )]=cos(α+β)cos(β﹣ )+sin(α+β)sin(β﹣ )= ×(﹣ )+(﹣ )× =﹣
故选C
【考点精析】通过灵活运用两角和与差的余弦公式和两角和与差的正弦公式,掌握两角和与差的余弦公式:;两角和与差的正弦公式:即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】黄种人群中各种血型的人所占的比例如下:

血型

A

B

AB

O

该血型的人所占比例(%)

28

29

8

35

已知同种血型的人可以输血,O型血可以输给任何一种血型的人,其他不同血型的人不能互相输血,小明是B型血,若小明因病需要输血,问:

(1)任找一个人,其血可以输给小明的概率是多少?

(2)任找一个人,其血不能输给小明的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且

(1)求证:不论为何值,总有平面BEF⊥平面ABC;

(2)当λ为何值时,平面BEF⊥平面ACD ?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家电公司销售部门共有200位销售员,每位部门对每位销售员都有1400万元的年度销售任务,已知这200位销售员去年完成销售额都在区间(单位:百万元)内,现将其分成5组,第1组,第2组,第3组,第4组,第5组对应的区间分别为 ,绘制出频率分布直方图.

(1)求的值,并计算完成年度任务的人数;

(2)用分层抽样从这200位销售员中抽取容量为25的样本,求这5组分别应抽取的人数;

(3)现从(2)中完成年度任务的销售员中随机选取2位,奖励海南三亚三日游,求获得此奖励的2位销售员在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=sin2(π+x)﹣cos(2π﹣x)+a
(1)求f(x)的值域
(2)若f(x)在(0, )内有零点,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn=﹣3n2+49n.
(1)请问数列{an}是否为等差数列?如果是,请证明;
(2)设bn=|an|,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分别为AC、DC的中点.

(1)求证:EF⊥BC;
(2)求二面角E﹣BF﹣C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A,ω>0,﹣π<φ<π)在一个周期内的图象如图所示.

(1)求f(x)的表达式;
(2)在△ABC中,f(C+ )=﹣1且 <0,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.

(Ⅰ)求椭圆C的方程;

(Ⅱ)若过点M(2,0)的直线与椭圆C相交于两点A,B,当时,求直线斜率的取值范围.

查看答案和解析>>

同步练习册答案