精英家教网 > 高中数学 > 题目详情
13.如图,在直三棱柱ABC-A1B1C1中,△ABC是正三角形,E是棱BB1的中点.
(Ⅰ)求证平面AEC1⊥平面AA1C1C;
(Ⅱ)若AA1=AB,求二面角C-AE-C1的平面角的余弦值.

分析 (Ⅰ)分别取AC,AC1的中点O,F,推导出四边形OBEF是平行四边形,从而OB∥EF.推导出OB⊥面ACC1A1,从而EF⊥平面ACC1A1,由此能证明平面AEC1⊥平面AA1C1C.
(Ⅱ)建立空间直角坐标系,利用向量法能求出二面角C-AE-C1的平面角的余弦值.

解答 证明:(Ⅰ)分别取AC,AC1的中点O,F,
连结OB,OF,EF,则OF$\underset{∥}{=}$BE,
∴四边形OBEF是平行四边形,∴OB∥EF.
∵ABC-A1B1C1是直三棱柱,ABC是正三角形,O是AC的中点,
∴OB⊥面ACC1A1,∴EF⊥平面ACC1A1
∴平面AEC1⊥平面AA1C1C.
(Ⅱ)建立如图O-xyz空间直角坐标系,设AA1=AB=2,
则$A({0,-1,0}),C({0,1,0}),E({\sqrt{3},0,1})$,
${C_1}({0,1,2}),\overrightarrow{AC}=({0,2,0}),\overrightarrow{A{C_1}}=({0,2,2}),\overrightarrow{AE}=({\sqrt{3},1,1})$,
设平面AEC的法向量为$\overrightarrow{n_1}=({{x_1},{y_1},{z_1}})$,
平面AEC1的法向量为$\overrightarrow{n_2}=({{x_2},{y_2},{z_2}})$,
则有$\left\{\begin{array}{l}\overrightarrow{n_1}•\overrightarrow{AC}=0\\ \overrightarrow{n_1}•\overrightarrow{AE}=0\end{array}\right.$,$\left\{\begin{array}{l}\overrightarrow{n_2}•\overrightarrow{A{C_1}}=0\\ \overrightarrow{n_2}•\overrightarrow{AE}=0\end{array}\right.$,
得$\overrightarrow{n_1}=({1,0,-\sqrt{3}})$,$\overrightarrow{n_2}=({0,1,-1})$
设二面角C-AE-C1的平面角为θ,
则$cosθ=\frac{{\overrightarrow{n_1}•\overrightarrow{n_2}}}{{|{\overrightarrow{n_1}}||{\overrightarrow{n_2}}|}}=\frac{{\sqrt{6}}}{4}$.
∴二面角C-AE-C1的平面角的余弦值为$\frac{{\sqrt{6}}}{4}$.

点评 本题考查面面垂直的证明,考查二面角的余弦值的求法,考查推理论证能力、运算求解能力,考查化归与转化思想、方程与函数思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.
(1)求数列{an}的通项公式;
(2)令bn=$\frac{4n}{{a}_{n}{a}_{n+1}}$•sin$\frac{{a}_{n}π}{2}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若圆锥的侧面积是底面积的2倍,则其母线与轴所成角的大小是30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等差数列{an}的前n项和为Sn,a1=-9,a2为整数,且对任意n∈N*都有Sn≥S5
(1)求{an}的通项公式;
(2)设${b_1}=\frac{4}{3}$,${b_{n+1}}=\left\{\begin{array}{l}{a_n},\;\;\;\;\;\;\;\;\;\;\;\;\;n为奇数\\-{b_n}+{(-2)^n},n为偶数\;\end{array}\right.$(n∈N*),求{bn}的前n项和Tn
(3)在(2)的条件下,若数列{cn}满足${c_n}={b_{2n}}+{b_{2n+1}}+λ{(-1)^n}{(\frac{1}{2})^{{a_n}+5}}\;(n∈{N^*})$.是否存在实数λ,使得数列{cn}是单调递增数列.若存在,求出λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知对任意实数k>1,关于x的不等式$k({x-a})>\frac{2x}{e^x}$在(0,+∞)上恒成立,则a的最大整数值为(  )
A.0B.-1C.-2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知△ABC中,若AB=3,AC=4,$\overrightarrow{AB}•\overrightarrow{AC}=6$,则BC=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx-a(x-1).
(1)求函数f(x)的极值;
(2)当a≠0时,过原点分别作曲线 y=f(x)与y=ex的切线l1,l2,若两切线的斜率互为倒数,求证:1<a<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,在棱长为2的正四面体A-BCD中,E、F分别为直线AB、CD上的动点,且$|{EF}|=\sqrt{3}$.若记EF中点P的轨迹为L,则|L|等于$\frac{π}{4}$.(注:|L|表示L的测度,在本题,L为曲线、平面图形、空间几何体时,|L|分别对应长度、面积、体积.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex[x2-(a+2)x+b],曲线y=f(x)在x=0处的切线方程为2a2x+y-b=0,其中e是自然对数的底数).
(Ⅰ)确定a,b的关系式(用a表示b);
(Ⅱ)对于任意负数a,总存在x>0,使f(x)<M成立,求实数M的取值范围.

查看答案和解析>>

同步练习册答案