【题目】已知是定义在上的奇函数,且,若对任意的m,,,都有.
若,求a的取值范围.
若不等式对任意和都恒成立,求t的取值范围.
【答案】(1);(2)
【解析】
(1)由函数的单调性的定义,构造出f(x)在定义域[﹣5,5],上是增函数,通过增函数性质解不等式得a的取值范围;
(2)由f(x)单调递增且奇函数,利用其最大值整理得关于a,t 的不等式,由a∈[﹣3,0]都恒成立,根据单调性可以求t的取值范围.
解:设任意x1,x2满足﹣5≤x1<x2≤5,由题意可得:
f(x1)﹣f(x2)即f(x1)<f(x2).所以f(x)在定义域[﹣5,5],上是增函数,
由f(2a﹣1)<f(3a﹣3),得,解得2<a,
故a的取值范围为(2,];
(2)由以上知f(x)是定义在[﹣5,5]上的单调递增的奇函数,且f(﹣5)=﹣2,
得在[﹣5,5]上f(x)max=f(5)=﹣f(﹣5)=2.
在[﹣5,5]上不等式f(x)≤(a﹣2)t+5对a∈[﹣3,0]都恒成立,
所以2≤(a﹣2)t+5即at﹣2t+3≥0,对a∈[﹣3,0]都恒成立,
令g(a)=at﹣2t+3,a∈[﹣3,0],则只需,即.
解得t
故t的取值范围(﹣∞,].
科目:高中数学 来源: 题型:
【题目】柴静《穹顶之下》的播出,让大家对雾霾天气的危害有了更进一步的认识,对于雾霾天气的研究也渐渐活跃起来,某研究机构对春节燃放烟花爆竹的天数x与雾霾天数y进行统计分析,得出下表数据.
x | 4 | 5 | 7 | 8 |
y | 2 | 3 | 5 | 6 |
(1)请画出上表数据的散点图,并说明其相关关系;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)试根据(2)求出的线性回归方程,预测燃放烟花爆竹的天数为9的雾霾天数.
(相关公式:)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为弘扬“中华优秀传统文化”,某中学在校内对全体学生进行了一次检测,规定分数分为优秀,为了解学生的测试情况,现从2000名学生中随机抽取100名学生进行分析,按成绩分组,得到如下频数分布表。
分数 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 5 | 35 | 30 | 20 | 10 |
(1)在图中作出这些数据的频率分布直方图;
(2)估计这次测试的平均分;
(3)估计这次测试成绩的中位数。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F. (Ⅰ)证明:B,C,G,F四点共圆;
(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,正确的命题是
A. 任意三点确定一个平面
B. 三条平行直线最多确定一个平面
C. 不同的两条直线均垂直于同一个平面,则这两条直线平行
D. 一个平面中的两条直线与另一个平面都平行,则这两个平面平行
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数y=f(x)图象上存在不同的两点A,B关于y轴对称,则称点对[A,B]是函数y=f(x)的一对“黄金点对”(注:点对[A,B]与[B,A]可看作同一对“黄金点对”).已知函数f(x)=,则此函数的“黄金点对“有( )
A. 0对B. 1对C. 2对D. 3对
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=-,若x∈R,f(x)满足f(-x)=-f(x).
(1)求实数a的值;
(2)判断函数f(x)(x∈R)的单调性,并说明理由;
(3)若对任意的t∈R,不等式f(t2-4t)+f(-k)<0恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a,b,c,d均为正数,且a+b=c+d,证明:
(1)若ab>cd,则 + > + ;
(2) + > + 是|a﹣b|<|c﹣d|的充要条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数y=f(x)的定义域为D,若对于任意的x1 , x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)的对称中心.研究函数f(x)=x+sinπx﹣3的某个对称中心,并利用对称中心的上述定义,可求得f( )+f( ) )+…+f( )+f( )的值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com