精英家教网 > 高中数学 > 题目详情

【题目】已知:函数

)求函数的极值.

)证明:当时,

)当时,方程无解,求的取值范围.

【答案】(1);(2)见解析;(3)

【解析】试题分析:

(1)根据导函数判断函数的单调性,然后可得极值.(2)构造函数利用导数证明上的增函数,故可得当时,从而证得不等式成立.(3)由当时,方程无解,可得当时,恒成立.然后根据分类讨论或分离参数可得实数的取值范围为

试题解析

,得

时,,单调递减,

时,,单调递增

∴当时,函数有极小值,且极小值为无极大值

)证明:设函数,则

由()知取得极小值,也为最小值,

上的增函数,

∴当时,

)当时,方程无解,

时,无解,

时,恒成立.

时,递增,故,满足题意;

时,由()得时符合题意.

综上所述,

∴实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆和点,动圆经过点且与圆相切,圆心的轨迹为曲线

(Ⅰ)求曲线的方程;

(Ⅱ)四边形的顶点在曲线上,且对角线均过坐标原点,若 .

(i) 求的范围;(ii) 求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱 平面 中点.

1)求证:

2)若 求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 平面,,为邻边作平行四边形,连接.

(1)求证:平面

(2)若二面角.

求证:平面平面

求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的方程为,抛物线的焦点为,点是抛物线上到直线距离最小的点.

(1)求点的坐标;

(2)若直线与抛物线交于两点,中点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校随机抽取200名学生,获得了他们一周课外阅读时间(单位:h)的数据,整理得到数据的频数分布表和频率分布直方图(如图).

 

 

 

1

[0,2)

12

2

[2,4)

16

3

[4,6)

34

4

[6,8)

44

 

 

 

 

5

[8,10)

50

6

[10,12)

24

7

[12,14)

12

8

[14,16)

4

9

[16,18]

4

合计

200

(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12 h的概率;

(2)求频率分布直方图中的a,b的值;

(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的200名学生该周课外阅读时间的平均数在第几组.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个结论中正确的个数是

(1)对于命题使得,则都有

(2)已知,则

(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为

(4)“”是“”的充分不必要条件.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·湖北武汉第二次调研)如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在[30,35),[35,40),[40,45)的上网人数呈现递减的等差数列分布,则年龄在[35,40)的网民出现的频率为 (  )

A. 0.04 B. 0.06

C. 0.2 D. 0.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

在平面直角坐标系中,曲线的参数方程为: 为参数, ),将曲线经过伸缩变换: 得到曲线.

(1)以原点为极点, 轴的正半轴为极轴建立坐标系,求的极坐标方程;

(2)若直线为参数)与相交于两点,且,求的值.

查看答案和解析>>

同步练习册答案