精英家教网 > 高中数学 > 题目详情
记函数f(x)=
x+4
x+1
-2
的定义域为A,g(x)=log3(x-m-2)(x-m)的定义域为B.若A⊆B,求实数m的取值范围.
分析:
x+4
x+1
-2≥0
,得
x-2
x+1
≤0
,即A=(-1,2],由(x-m-2)(x-m)>0,得B=(-∞,m)∪(m+2,+∞),由A⊆B,知m>2或m+2≤-1,由此能求出实数a的取值范围.
解答:解:
x+4
x+1
-2≥0
,得
x-2
x+1
≤0
,-1<x≤2,
即A=(-1,2],(4分)
由(x-m-2)(x-m)>0,
得B=(-∞,m)∪(m+2,+∞),(8分)
∵A⊆B,∴m>2或m+2≤-1,即m>2或m≤-3
故当B⊆A时,实数a的取值范围是(-∞,-3]∪(2,+∞).(12分)
点评:本题考查集合的运算和应用,是基础题.解题时要认真审题,注意对数函数的定义域的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,且对于一切实数x满足f(x+2)=f(2-x),f(x+7)=f(7-x)
(1)若f(5)=9,求:f(-5);
(2)已知x∈[2,7]时,f(x)=(x-2)2,求当x∈[16,20]时,函数g(x)=2x-f(x)的表达式,并求出g(x)的最大值和最小值;
(3)若f(x)=0的一根是0,记f(x)=0在区间[-1000,1000]上的根数为N,求N的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=f1(x),f(f(x))=f2(x),它们定义域的交集为D,若对任意的x∈S,f2(x)=x,则称f(x)是集合M的元素,例如f(x)=-x+1,对任意x∈R,f2(x)=f(f(x))=-(-x+1)+1=x,故f(x)=-x+1∈M.
(1)设函数f(x)=log2(1-2x),判断f(x)是否是M的元素;
(2)f(x)=
axx+b
∈M(a<0),求使f(x)<1成立的x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)=
x-1ax+1
 (a≠0且a≠-1)

(1)试求函数f(x)的定义域和值域;
(2)已知函数h(x)=f(2x),且函数y=h(x)为奇函数,求实数a的值;
(3)记函数g(x)=h(x-1)+1,试计算g(-1)+g(0)+g(1)+g(2)+g(3)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

同步练习册答案