【题目】对于函数①f(x)=4x+-5,②f(x)=|log2 x|-()x,③f(x)=cos(x+2)-cosx,判断如下两个命题的真假:
命题甲:f(x)在区间(1,2)上是增函数;
命题乙:f(x)在区间(0,+∞)上恰有两个零点x1,x2,且x1x2<1.
能使命题甲、乙均为真的函数的序号是_____________.
【答案】
【解析】①,在区间(1,2)上, 在区间(1,2)上是增函数,使甲为真,f(x)的最小值是,又,在上恰有两个零点: , 使乙为真; ②在区间(1,2)上, ,是增函数, 也是增函数,两者的和函数也是增函数,使甲为真.分别画出与的图象,恰有两个不同的交点,即在区间(0,+∞)上恰有两个零点x1,x2,且,使乙为真; ③令,可得: 即,在区间(0,+∞)上有无数个零点,使乙为假;综上可知,应填①②.
点睛:对于函数,我们把使的实数x叫做函数的零点, 函数的零点就是方程的实数根,也是函数的图象与x轴的交点的横坐标.如果函数在区间上的图象是连续不断的一条曲线,并且有,那么函数在区间内有零点,即存在,使得,这个c也就是方程的根.
科目:高中数学 来源: 题型:
【题目】如图,椭圆的上、下顶点分别为, ,右焦点为,点在椭圆上,且.
(1)若点坐标为,求椭圆的方程;
(2)延长交椭圆与点,若直线的斜率是直线的斜率的3倍,求椭圆的离心率;
(3)是否存在椭圆,使直线平分线段?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司对新研发的一种产品进行试销,得到如下数据及散点图:
其中, , , .
(1)根据散点图判断与, 与哪一对具有较强的线性相关性(给出判断即可,不必说明理由)?
(2)根据(1)的判断结果及数据,建立关于的回归方程(运算过程及回归方程中的系数均保留两位有效数字).
(3)定价为150元/ 时,天销售额的预报值为多少元?
附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(, )为奇函数,且相邻两对称轴间的距离为.
(1)当时,求的单调递减区间;
(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3-3ax-1,a≠0.
(1)求f(x)的单调区间;
(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆()的离心率是,过点(,)的动直线与椭圆相交于,两点,当直线平行于轴时,直线被椭圆截得的线段长为.
⑴求椭圆的方程:
⑵已知为椭圆的左端点,问: 是否存在直线使得的面积为?若不存在,说明理由,若存在,求出直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com