精英家教网 > 高中数学 > 题目详情

【题目】如图,在等腰梯形ABCD中,AB=2,CD=4,BC= ,点E,F分别为AD,BC的中点.如果对于常数λ,在ABCD的四条边上,有且只有8个不同的点P使得 =λ成立,那么实数λ的取值范围为

【答案】(﹣ ,﹣
【解析】解:以DC所在直线为x轴,DC的中垂线为y轴建立平面直角坐标系,
则梯形的高为 =2,∴A(﹣1,2),B(1,2),C(2,0),D(﹣2,0),∴E(﹣ ,1),F( ,1).
①当P在DC上时,设P(x,0)(﹣2≤x≤2),则 =(﹣ ﹣x,1) =( ,1).
于是 =(﹣ ﹣x)( ﹣x)+1=x2 =λ,
∴当λ=﹣ 时,方程有一解,当﹣ <λ≤ 时,λ有两解;
②当P在AB上时,设P(x,2)(﹣1≤x≤1),则 =(﹣ ﹣x,﹣1) =( ,﹣1).
于是 =(﹣ ﹣x)( ﹣x)+1=x2 =λ,
∴当λ=﹣ 时,方程有一解,当﹣ <λ≤﹣ 时,λ有两解;
③当P在AD上时,直线AD方程为y=2x+4,
设P(x,2x+4)(﹣2<x<﹣1),则 =(﹣ ﹣x,﹣2x﹣3) =( ,﹣2x﹣3).
于是 =(﹣ ﹣x)( ﹣x)+(﹣2x﹣3)2=5x2+12x+ =λ.
∴当λ=﹣ 或﹣ <λ< 时,方程有一解,当﹣ 时,方程有两解;
④当P在BC上时,直线BC的方程为y=﹣2x+4,
设P(x,﹣2x+4)(1<x<2),则 =(﹣ ﹣x,2x﹣3) =( ,2x﹣3).
于是 =(﹣ ﹣x)( ﹣x)+(2x﹣3)2=5x2﹣12x+ =λ.
∴当λ=﹣ 或﹣ <λ< 时,方程有一解,当﹣ 时,方程有两解;
综上,若使梯形上有8个不同的点P满足 =λ成立,
则λ的取值范围是(﹣ ]∩(﹣ ,﹣ ]∩(﹣ ,﹣ )∩(﹣ ,﹣ )=(﹣ ,﹣ ).
所以答案是:(﹣ ,﹣ ).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法正确的是 ( )

A. x<1”“log2(x+1)<1”的充分不必要条件

B. 命题x>0,2x>1”的否定是x0≤0,≤1”

C. 命题ab,则ac2bc2的逆命题是真命题

D. 命题a+b≠5,则a≠2b≠3”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲,乙两人进行围棋比赛,共比赛2n(n∈N+)局,根据以往比赛胜负的情况知道,每局甲胜的概率和乙胜的概率均为 .如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为P(n).
(1)求P(2)与P(3)的值;
(2)试比较P(n)与P(n+1)的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},{bn}均为各项都不相等的数列,Sn为{an}的前n项和,an+1bn=Sn+1(n∈N).
(1)若a1=1,bn= ,求a4的值;
(2)若{an}是公比为q的等比数列,求证:存在实数λ,使得{bn+λ}为等比数列;
(3)若{an}的各项都不为零,{bn}是公差为d的等差数列,求证:a2 , a3 , …,an…成等差数列的充要条件是d=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲,乙两人进行围棋比赛,共比赛2n(n∈N+)局,根据以往比赛胜负的情况知道,每局甲胜的概率和乙胜的概率均为 .如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为P(n).
(1)求P(2)与P(3)的值;
(2)试比较P(n)与P(n+1)的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:

直径mm

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合计

件数

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

经计算,样本的平均值,标准差,以频率值作为概率的估计值.

(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进

行评判(表示相应事件的概率);①;②;③.

评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备的性能等级.

(2)将直径小于等于或直径大于的零件认为是次品.

ⅰ)从设备的生产流水线上随意抽取2件零件,计算其中次品个数的数学期望

ⅱ)从样本中随意抽取2件零件,计算其中次品个数的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰梯形ABCD中,AB=2,CD=4,BC= ,点E,F分别为AD,BC的中点.如果对于常数λ,在ABCD的四条边上,有且只有8个不同的点P使得 =λ成立,那么实数λ的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面是边长为3的正方形,平面与平面所成的角为.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,A,B,C的对边分别是a,b,c,3sin2C+8sin2A=11sinAsinC,且c<2a.
(1)求证:△ABC为等腰三角形
(2)若△ABC的面积为8 .且sinB= ,求BC边上的中线长.

查看答案和解析>>

同步练习册答案