【题目】已知数列满足,,其中是等差数列,且,则________.
【答案】2018
【解析】
数列{an}、{bn}满足bn=lnan,n∈N*,其中{bn}是等差数列,可得bn+1﹣bn=lnan+1﹣lnan=ln常数t.常数et=q>0,因此数列{an}为等比数列.由,
可得a1a1009=a2a1008.再利用对数运算性质即可得出.
解:数列{an}、{bn}满足bn=lnan,n∈N*,其中{bn}是等差数列,
∴bn+1﹣bn=lnan+1﹣lnan=ln常数t.
∴常数et=q>0,
因此数列{an}为等比数列.
且,
∴a1a1009=a2a1008.
则b1+b2+…+b1009=ln(a1a2…a1009)lne2018=2018.
故答案为:2018.
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.
(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;
(Ⅱ)求证:A为线段BM的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,给出下列四个判断:
(1)的值域是;
(2)的图像是轴对称图形;
(3)的图像是中心对称图形;
(4)方程有解.
其中正确的判断有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图一块长方形区域,,,在边的中点处有一个可转动的探照灯,其照射角始终为,设,探照灯照射在长方形内部区域的面积为.
(1)当时,求关于的函数关系式;
(2)当时,求的最大值;
(3)若探照灯每9分钟旋转“一个来回”(自转到,再回到,称“一个来回”,忽略在及处所用的时间),且转动的角速度大小一定,设边上有一点,且,求点在“一个来回”中被照到的时间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦点和上顶点分别为,定义:为椭圆的“特征三角形”,如果两个椭圆的特征三角形是相似三角形,那么称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比,已知点是椭圆的一个焦点,且上任意一点到它的两焦点的距离之和为4
(1)若椭圆与椭圆相似,且与的相似比为2:1,求椭圆的方程.
(2)已知点是椭圆上的任意一点,若点是直线与抛物线异于原点的交点,证明:点一定在双曲线上.
(3)已知直线,与椭圆相似且短半轴长为的椭圆为,是否存在正方形,(设其面积为),使得在直线上,在曲线上?若存在,求出函数的解析式及定义域;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com