精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足,其中是等差数列,且,则________

【答案】2018

【解析】

数列{an}{bn}满足bnlnannN*,其中{bn}是等差数列,可得bn+1bnlnan+1lnanln常数t常数etq0,因此数列{an}为等比数列.由

可得a1a1009a2a1008.再利用对数运算性质即可得出.

解:数列{an}{bn}满足bnlnannN*,其中{bn}是等差数列,

bn+1bnlnan+1lnanln常数t

常数etq0

因此数列{an}为等比数列.

a1a1009a2a1008

b1+b2++b1009lna1a2a1009lne20182018

故答案为:2018

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示的圆锥的体积为,圆的直径,点C的中点,点D是母线PA的中点.

(1)求该圆锥的侧面积;

(2)求异面直线PBCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是奇函数(其中

1)求的值;

2)讨论的单调性;

3)当的定义域区间为时,的值域为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点MN,过点Mx轴的垂线分别与直线OPON交于点AB,其中O为原点.

(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;

(Ⅱ)求证:A为线段BM的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在折线中,,,分别是的中点,若折线上满足条件的点至少有个,则实数的取值范围是___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出下列四个判断:

1的值域是

2的图像是轴对称图形;

3的图像是中心对称图形;

4)方程有解.

其中正确的判断有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图一块长方形区域在边的中点处有一个可转动的探照灯其照射角始终为探照灯照射在长方形内部区域的面积为.

(1)当时,求关于的函数关系式;

(2)当时,求的最大值;

(3)若探照灯每9分钟旋转“一个来回”(转到,再回到,称“一个来回”,忽略处所用的时间),且转动的角速度大小一定,设边上有一点,且,求点在“一个来回”中被照到的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦点和上顶点分别为,定义:为椭圆特征三角形,如果两个椭圆的特征三角形是相似三角形,那么称这两个椭圆为相似椭圆,且特征三角形的相似比即为相似椭圆的相似比,已知点是椭圆的一个焦点,且上任意一点到它的两焦点的距离之和为4

1)若椭圆与椭圆相似,且的相似比为21,求椭圆的方程.

2)已知点是椭圆上的任意一点,若点是直线与抛物线异于原点的交点,证明:点一定在双曲线.

3)已知直线,与椭圆相似且短半轴长为的椭圆为,是否存在正方形,(设其面积为),使得在直线上,在曲线上?若存在,求出函数的解析式及定义域;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的单调区间;

2)当,讨论的零点个数;

查看答案和解析>>

同步练习册答案