精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x2+bx+c)ex在点P(0,f(0))处的切线方程为2x+y-1=0.
(1)求b,c的值;
(2)求函数f(x)的单调区间;
(3)若方程f(x)=m恰有两个不等的实根,求m的取值范围.
分析:(1)由函数f(x)=(x2+bx+c)ex在点P(0,f(0))处的切线方程为2x+y-1=0,可求得f(0)的值,求导,令f′(0)=-2,解方程组可求得b,c的值;(2)令导函数f′(x)=[0,求解,分析导函数的符号,可知函数的单调区间;(3)方程f(x)=m恰有两个不等的实根,转化为求函数的极值和单调性,从而可知函数图象的变化情况,可求得m的取值范围.
解答:解:(1)f′(x)=[x2+(b+2)x+b+c]•ex
∵f(x)在点P(0,f(0))处的切线方程为2x+y-1=0.
f′(0)=-2
f(0)=1
?
b+c=-2
c=1
?
b=-3
c=1

(2)由(1)知:f(x)=(x2-3x+1)•ex,f′(x)=(x2-x-2)•ex=(x-2)(x+1)•ex
精英家教网
∴f(x)的单调递增区间是:(-∞,-1)和(2,+∞)f(x)的单调递减区间是:(-1,2)
(3)由(2)知:f(x)max=f(-1)=
5
e
,f(x)min=f(2)=-e2
但当x→+∞时,f(x)→+∞;又当x<0时,f(x)>0,
则当且仅当m∈(-e2,0]∪{
5
e
}
时,方程f(x)=m恰有两个不等的实根.
点评:考查函数导数的几何意义和利用导数研究函数的极值和利用导数研究函数的单调性,以及方程根的个数问题,转化为求函数的最值问题,体现了转化的思想方法和数形结合的思想方法,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案