精英家教网 > 高中数学 > 题目详情
4.若曲线y=sinx,x∈(-π,π)在点P处的切线平行于曲线y=$\sqrt{x}(\frac{x}{3}+1)$在点Q处的切线,则PQ的斜率为$\frac{4}{3}$.

分析 设出P和Q点的坐标,分别求出两个函数的导函数,利用余弦函数的值域及不等式求最值,得到两个导函数的取值范围,再由函数y=sinx(x∈(-π,π))图象在点P处的切线与函数y=$\sqrt{x}(\frac{x}{3}+1)$在点Q处的切线平行,得到P,Q点的横坐标,代入原函数求得P,Q的纵坐标,由两点求斜率得答案.

解答 解:设P(a,b),Q(m,n),
由y=sinx,得y′=cosx,
∵x∈(-π,π),
∴-1<y′≤1.
由y=$\sqrt{x}(\frac{x}{3}+1)$,得y′=$\frac{1}{2}$($\sqrt{x}$+$\frac{1}{\sqrt{x}}$)≥1.
∵函数y=sinx(x∈(-π,π))图象在点P处的切线
与函数y=$\sqrt{x}(\frac{x}{3}+1)$在点Q处的切线平行,
∴cosa=$\frac{1}{2}$($\sqrt{m}$+$\frac{1}{\sqrt{m}}$)=1.
∵a∈(-π,π),m>0,
∴a=0,m=1,
∴b=sin0=0,n=$\sqrt{m}$($\frac{m}{3}$+1)=$\frac{4}{3}$.
∴直线PQ的斜率为:$\frac{\frac{4}{3}-0}{1-0}$=$\frac{4}{3}$.
故答案为:$\frac{4}{3}$.

点评 本题考查了利用导数研究过曲线上某点处的切线方程,考查了利用基本不等式求函数最值,考查了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.画出下列函数的图象,并根据图象写出单调减区间和值域.
(1)y=1+$\frac{|x|-x}{2}$;
(2)y=|x2-x|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知y=f(x)为R上的连续函数,其导数为f′(x),当x≠0时,f′(x)>$\frac{-f(x)}{x}$,则关于x的函数g(x)=f(x)+$\frac{1}{x}$的零点个数为(  )
A.1B.0C.0或2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=ex-x2,g(x)=ax+b(a>0),若对?x1∈[0,2],?x2∈[0,2],使得f(x1)=g(x2),则实数a,b的取值范围是(  )
A.0<a≤$\frac{{{e^2}-5}}{2}$,b≥1B.0<a≤$\frac{{{e^2}-5}}{2}$,b≤1C.a≥$\frac{{{e^2}-5}}{2}$,b≥1D.a≥$\frac{{{e^2}-5}}{2}$,b≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a,b是实数,则“a+b>5”是“$\left\{\begin{array}{l}{a>2}\\{b>3}\end{array}\right.$”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.各项均不为零的数列{an},首项a1=1,且对于任意n∈N*均有6an+1-an+1an-2an=0,bn=$\frac{1}{a_n}$.
(1)求{bn}的通项公式.
(2)若{bn}的前n项和为Tn,求证:当n≥2时,$\frac{8}{3}(n+1){T_n}$>(n+1)Cn+102n+nCn+112n-1+(n-1)Cn+122n-2+…+(n+1-k)Cn+1k2n-k+…+Cn+1n20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,a=$\sqrt{3}$,c=$\sqrt{6}$,B=$\frac{π}{4}$,则b的长为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数y=f(x)在定义域内给定区间[a,b]上存在xo(a<xo<b),满足f(xo)=$\frac{f(b)-f(a)}{b-a}$,则称函数y=f(x)是[a,b]上的“平均值函数”,xo是它的一个均值点.例如y=|x|是区间[-2,2]上的“平均值函数”,O就是它的均值点.
(I)若函数f(x)=x2-mx-1是[-1,1]上的“平均值函数”,则实数m的取值范围是(0,2).
(II)若函数f(x)=lnx是区间[a,b](b>a≥1)上的“平均值函数”,xo是它的一个均值点,要使得lnx°<$\frac{m}{{\sqrt{ab}}}$恒成立,参数m的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)是定义在R上的奇函数,且f(x)+3=f(x+1),则f(1)的值为(  )
A.1B.0C.3D.-1

查看答案和解析>>

同步练习册答案