精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标坐标系中,曲线的参数方程为为参数),以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为.

(1)求曲线的普通方程;

(2)若与曲线相切,且与坐标轴交于两点,求以为直径的圆的极坐标方程.

【答案】(1);(2)

【解析】试题分析:(1)由曲线的参数方程为为参数),消去参数t,可得曲线的普通方程为.

(2)将化直后与曲线C联立得,由与曲线相切,所以进而可求以为直径的圆的直角坐标方程为,由极直互化公式可得对应的极坐标方程为.

试题解析:(1)由,得

,即

故曲线的普通方程为.

(2)由,得

联立得

因为与曲线相切,所以

所以的方程为,不妨假设,则,线段的中点为

所以,又

故以为直径的圆的直角坐标方程为

其对应的极坐标方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x.

(1)判断函数的奇偶性,并证明;

(2)用单调性的定义证明函数f(x)=2x在(0,+∞)上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了200人进行抽样分析,得到如表(单位:人):

经常使用

偶尔或不用

合计

30岁及以下

70

30

100

30岁以上

60

40

100

合计

130

70

200

(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?

(Ⅱ)①现从所抽取的30岁以上的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出3人赠送优惠券,求选出的3人中至少有2人经常使用共享单车的概率.

②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用共享单车的人数为,求的数学期望和方差.

参考公式:,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)设曲线交于点,曲线轴交于点,求线段的中点到点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 ,数列满足,将数列的前100项从大到小排列得到数列,若,则k的值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面四个命题中,其中正确命题的序号为____________.

① 函数是周期为的偶函数;

② 若 是第一象限的角,且,则

是函数的一条对称轴方程;

④ 在内方程有3个解

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面上有两定点AB,该平面上一动点P与两定点AB的连线的斜率乘积等于常数,则动点P的轨迹可能是下面哪种曲线:①直线;②圆;③抛物线;④双曲线;⑤椭圆_____(将所有可能的情况用序号都写出来)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形中,,平面平面.

(1)求证:平面平面

(2)若,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若存在,使得,则a的取值范围是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案