精英家教网 > 高中数学 > 题目详情

如图,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.
(I)设E是DC的中点,求证:D1E∥平面A1BD;
(II)求二面角A1-BD-C1的余弦值.

解:(I)连接BE,则四边形DABE为正方形,
∴BE=AD=A1D1,且BE∥AD∥A1D1
∴四边形A1D1EB为平行四边形,∴D1E∥A1B.
∵D1E?平面A1BD,A1B?平面A1BD,
∴D1E∥平面A1BD.
(II)以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,
不妨设DA=1,则D(0,0,0),A(1,0,0),B(1,1,0),C1(0,2,2),A1(1,0,2).

为平面A1BD的一个法向量,

取z=1,则
为平面C1BD的一个法向量,

取z1=1,则
∵.
由于该二面角A1-BD-C1为锐角,
所以所求的二面角A1-BD-C1的余弦值为
分析:(1)由题意及图形所给的线段大小之间的关系,利用线线平行进而得到线面平行;
(2)利用图形中两两垂直的线和题中所给的线段的大小,建立空间直角坐标系,利用向量的知识求出二面角的大小.
点评:此题重点考查了学生的空间想象能力,还考查了线面平行的判定定理及利用空间直角坐标系即向量的知识求二面角的大小.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点,F为AB的中点.证明:
(1)EE1∥平面FCC1
(2)平面D1AC⊥平面BB1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

18、如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点.
(1)设F是棱AB的中点,证明:直线EE1∥平面FCC1
(2)证明:平面D1AC⊥平面BB1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

15、如图,在直四棱柱ABCD-A1B1C1D1中,A1C1⊥B1D1,E,F分别是AB,BC的中点.
(1)求证:EF∥平面A1BC1
(2)求证:平面D1DBB1⊥平面A1BC1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1,F分别是棱AD,AA1,AB的中点.
(1)证明:直线EE1∥平面FCC1
(2)求二面角B-FC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)如图,在直四棱柱ABCD-A1B1C1D1中,AB=BC,∠ABC=60°,BB1=BC=2,M为BC中点,点N在CC1上.
(1)试确定点N的位置,使AB1⊥MN;
(2)当AB1⊥MN时,求二面角M-AB1-N的正切值.

查看答案和解析>>

同步练习册答案