精英家教网 > 高中数学 > 题目详情

【题目】关于函数,有下列四个命题:①的值域是;②是奇函数;③上单调递增;④方程总有四个不同的解;其中正确的是( )

A.①②B.②③C.②④D.③④

【答案】C

【解析】

①中通过令可求得的值,可知值域包括,①错误;

②根据奇函数的定义可判断出②正确;

③中通过反例可确定上不满足单调递增的定义,③错误;

④将方程变为,通过验证两个一元二次方程各有两个不等实根,并且不是其中任何一个的根,即可确定方程共有四个不同解,④正确.

①中,令,解得:,可知值域含有元素,则①错误

②中,由解析式可知定义域为

是奇函数,则②正确

③中,当时,;当时,

可知上不满足单调递增的定义,则③错误

④由得:,即

整理可得:

各有两个不等实根

不是两个方程的根

方程总有四个不同的解,则④正确

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校举行汉字听写比赛,为了了解本次比赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100)进行统计,请根据频率分布表中所提供的数据,解答下列问题:

(1)求的值;

(2)若从成绩较好的第345组中按分层抽样的方法抽取6人参加市汉字听写比赛,并从中选出2人做种子选手,求2人中至少有1人是第4组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线平面,直线平行四边形,四棱锥的顶点在平面上,分别是的中点.

(1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】—只蚂蚁在三边长分别为的三角形内自由爬行,某时刻该蚂蚁距离三角形的任意一个顶点的距离不超过的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求证:恒成立;

(2)若关于的方程至少有两个不相等的实数根,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产某种商品吨,此时所需生产费用为万元,当出售这种商品时,每吨价格为万元,这里为常数,.

1)为了使这种商品的生产费用平均每吨最低,那么这种商品的产量应为多少吨?

2)如果生产出来的商品能全部卖完,当产量是120吨时企业利润最大,此时出售价格是每吨160万元,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某港口水的深度是时间,单位:)的函数,记作.下面是某日水深的数据:

经长期观察,的曲线可以近似地看成函数的图象.一般情况下,船舶航行时,船底离海底的距离为以上时认为是安全的(船舶停靠时,船底只需不碰海底即可).某船吃水程度(船底离水面的距离)为,如果该船希望在同一天内安全进出港,请问,它最多能在港内停留( )小时(忽略进出港所需的时间).

A.6 B.12

C.16 D.18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°AC=AB=AA1EBC的中点.

(1)求证:AEB1C

(2)若GC1C中点,求二面角C-AG-E的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

讨论的单调性;

,求实数的取值范围.

查看答案和解析>>

同步练习册答案