精英家教网 > 高中数学 > 题目详情

【题目】某地区2010年至2016年农村居民家庭纯收入(单位:千元)的数据如下表

年份

2010

2011

2012

2013

2014

2015

2016

年份代号x

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求关于的线性回归方程。

(2)判断之间是正相关还是负相关?

(3)预测该地区2018年农村居民家庭人均纯收入。

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

【答案】(1)(2)之间是正相关(3)预计到2018年,该地区人均纯收入约为6.8千元.

【解析】试题分析:(1)计算出 ,得到线性回归方程;(2)因为,所以之间是正相关(3)利用线性回归防尘预测该地区2018年农村居民家庭人均纯收入.

试题解析:

(1)因为,设回归方程为,代入公式,经计算得,所以关于的回归方程为

(2)因为,所以之间是正相关

(3)预计到2018年,该地区人均纯收入,所以,预计到2018年,该地区人均纯收入约为6.8千元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求不等式的解集;

(2)如果恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)试确定的取值范围,使得函数上为单调函数;

(2)若为自然数,则当取哪些值时,方程上有三个不相等的实数根,并求出相应的实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,若函数满足:对于给定的 ,存在,使得成立,那么称具有性质.

1)函数 是否具有性质?说明理由;

2)已知函数具有性质,求的最大值;

3)已知函数的定义域为,满足,且的图像是一条连续不断的曲线,问:是否存在正整数n,使得函数具有性质,若存在,求出这样的n的取值集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C ab>0)的焦距为,且椭圆C过点A1 ),

(Ⅰ)求椭圆C的方程;

(Ⅱ)若O是坐标原点,不经过原点的直线L:y=kx+m与椭圆交于两不同点P(x1,y1),Q(x2,y2),且y1y2=k2x1x2,求直线L的斜率k;

(Ⅲ)在(Ⅱ)的条件下,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,是边长为的棱形,且分别是的中点.

(1)证明:平面

(2)若二面角的大小为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 且满足Sn=2﹣an , n=1,2,3,….
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,且bn+1=bn+an , 求数列{bn}的通项公式;
(3)设cn=n(3﹣bn),求数列{cn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知含有个元素的正整数集 )具有性质:对任意不大于(其中)的正整数,存在数集的一个子集,使得该子集所有元素的和等于

(Ⅰ)写出 的值;

(Ⅱ)证明:“ ,…, 成等差数列”的充要条件是“”;

(Ⅲ)若,求当取最小值时的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示,若将f(x)的图象上所有点向右平移 个单位得到函数g(x)的图象,则函数g(x)的单调增区间为(
A. ,k∈Z
B. ,k∈Z
C. ,k∈Z
D. ,k∈Z

查看答案和解析>>

同步练习册答案