精英家教网 > 高中数学 > 题目详情

【题目】某个产品有若千零部件构成,加工时需要经过6道工序,分别记为.其中,有些工序因为是制造不同的零部件,所以可以在几台机器上同时加工;有些工序因为是对同一个零部件进行处理,所以存在加工顺序关系.若加工工序必须要在工序完成后才能开工,则称的紧前工序.现将各工序的加工次序及所需时间(单位:小时)列表如下:

工序

加工时间

3

4

2

2

2

1

紧前工序

现有两台性能相同的生产机器同时加工该产品,则完成该产品的最短加工时间是__________小时.(假定每道工序只能安排在一台机器上,且不能间断).

【答案】8.

【解析】

分析:由题意,根据题意两台性能相同的生产机器同时加工该产品,确定好加工顺序,即可得到答案.

详解:由题意,可确定如图所示的加工顺序,如图所示,可得用两台性能相同的生产机器同时加工该产品,要完成该产品的最短加工时间为8小时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是函数的导函数的图象,给出下列命题:

①-2是函数的极值点;

是函数的极值点;

处取得极大值;

④函数在区间上单调递增.则正确命题的序号是

A. ①③ B. ②④ C. ②③ D. ①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0
(1)求p0的值;
(参考数据:若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)
(2)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角中,分别为内角所对的边,且满足

(Ⅰ)求角的大小;

(Ⅱ)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中.

(Ⅰ)当时,求函数的极值;

(Ⅱ)当时,证明:函数不可能存在两个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)若函数在区间上单调递增,求实数的取值范围;

(Ⅲ)设函数,其中.证明:的图象在图象的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(i)T={f(x)|x∈S};(ii)对任意x1 , x2∈S,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是(
A.A=N* , B=N
B.A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10}
C.A={x|0<x<1},B=R
D.A=Z,B=Q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,丄平面,.

(1)证明;

(2)求二面角的正弦值;

(3)设为棱上的点,满足异面直线所成的角为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况.在30名男性驾驶员中,平均车速超过100额有20人,不超过100 的有10人;在20名女性驾驶员中,平均车速超过100的有5人,不超过100的有15人.

(1)完成下面的列联表:

平均车速超过100

平均车速不超过100

合计

男性驾驶员人数

女性驾驶员人数

合计

(2)判断是否有99.5%的把握认为,平均车速超过100与性别有关.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案