精英家教网 > 高中数学 > 题目详情
16.如图所示,水平放置的△ABC在坐标系中的直观图,其中D′是A′C′的中点,且∠ACB≠30°,则原图形中与线段BD的长相等的线段有2条.

分析 把△ABC的直观图还原为原来的图形,得到△ABC是直角三角形,D是斜边的中点,由此得出结论.

解答 解:把△ABC的直观图还原为原来的图形,如图所示,

△ABC中,∠ABC=90°,D是AC的中点,且∠ACB≠30°,
所以△ABC中与线段BD的长相等的线段是AD和CD,有2条.
故答案为:2.

点评 本题考查了平面图形的斜二测画法的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知$f(x)=1+\frac{a}{{3}^{x}+1}$(a为常数).
(Ⅰ)若f(x)为奇函数,求实数a的值;    
(Ⅱ)在Ⅰ的前提下,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知正方体ABCD-A1B1C1D1,下列结论中正确的是①②④(只填序号).
①AD1∥BC1;  ②平面AB1D1∥平面BDC1; ③AD1∥DC1;   ④AD1∥平面BDC1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义在R上的奇函数f(x),对于?x∈R,都有$f({\frac{3}{4}+x})=f({\frac{3}{4}-x})$,且满足f(4)>-2,$f(2)=m-\frac{3}{m}$,则实数m的取值范围是{m|m<-1或0<m<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x|x-m|,x∈R.且f(4)=0
(1)求实数m的值.
(2)作出函数f(x)的图象,并根据图象写出f(x)的单调区间
(3)若方程f(x)=k有三个实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知△ABC中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别为AC,AD上的动点,且AE:AC=AF:AD=k,k∈(0,1).
(1)求证:不论k为何值,总有平面BEF⊥平面ABC;
(2)当k为何值时.平面BEF⊥平面ACD;
(3)在(2)的条件下三棱锥A-BEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.将两直角边长分别为5和12的直角三角板的一条直角边对接成三棱锥A′-BCD,使A′C与BD成60°角,求体积VA′-BCD

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知等比数列an=$\frac{3}{8}$×3n,则公比q=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设全集U={x|-6<x<6},集合A={x|-1<x≤2},集合B={x|0<x<3},求A∩B,A∪B,∁U(A∩B),∁U(A∪B),∁UA∩∁UB.∁UA∪∁UB.

查看答案和解析>>

同步练习册答案