精英家教网 > 高中数学 > 题目详情

【题目】在正方体中,点分别是棱的中点,给出下列结论:

①直线所成角为;②正方体的所有棱中与直线异面的有条;③直线平面;④平面平面.其中正确的是(

A.①②B.②③C.②④D.①④

【答案】D

【解析】

作出图形,推导出,求得,可判断命题①的正误;利用异面直线的概念可判断命题②的正误;利用线面平行的判定定理可判断命题③的正误;利用面面垂直的判定定理可判断命题④的正误.综合可得出结论.

对于命题①,如下图所示:

连接分别为的中点,则

在正方体

四边形为平行四边形,

所以,异面直线所成角为

易知是等边三角形,则,所以,直线所成角为

命题①正确;

对于命题②,在正方体中,与异面的棱有,共条,命题②错误;

对于命题③,在正方体中,平面

平面

四边形为正方形,则

平面

平面,则平面平面,矛盾.

命题③错误;

对于命题④,如下图所示:

四边形为正方形,

在正方体中,平面平面

平面

平面平面平面,命题④正确.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,如图,已知椭圆E的左、右顶点分别为,上、下顶点分别为.设直线倾斜角的余弦值为,圆与以线段为直径的圆关于直线对称.

1)求椭圆E的离心率;

2)判断直线与圆的位置关系,并说明理由;

3)若圆的面积为,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某手机生产企业为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到单价(单位:千元)与销量(单位:百件)的关系如下表所示:

单价(千元)

1

1.5

2

2.5

3

销量(百件)

10

8

7

6

已知.

(Ⅰ)若变量具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程

(Ⅱ)用(Ⅰ)中所求的线性回归方程得到与对应的产品销量的估计值,当销售数据对应的残差满足时,则称为一个好数据,现从5个销售数据中任取3个,求其中好数据的个数的分布列和数学期望.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离心率为的椭圆经过抛物线的焦点,斜率为1的直线经过且与椭圆交于两点.

1)求面积;

2)动直线与椭圆有且仅有一个交点,且与直线分别交于两点,且为椭圆的右焦点,证明为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论上的单调性.

(2)当时,若上的最大值为,讨论:函数内的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等边的边长为,点分别是上的点,且满足 (如图(1)),将沿折起到的位置,使二面角成直二面角,连接(如图(2)).

(1)求证:平面

(2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某高中女学生中选取10名学生,根据其身高、体重数据,得到体重关于身高的回归方程,用来刻画回归效果的相关指数,则下列说法正确的是(

A.这些女学生的体重和身高具有非线性相关关系

B.这些女学生的体重差异有60%是由身高引起的

C.身高为的女学生的体重一定为

D.这些女学生的身高每增加,其体重约增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线L的参数方程为: ,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为 .

Ⅰ)求曲线C的参数方程;

Ⅱ)当 时,求直线l与曲线C交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校需要从甲、乙两名学生中选一人参加数学竞赛,抽取了近期两人次数学考试的成绩,统计结果如下表:

第一次

第二次

第三次

第四次

第五次

甲的成绩(分)

乙的成绩(分)

(1)若从甲、乙两人中选出一人参加数学竞赛,你认为选谁合适?请说明理由.

(2)若数学竞赛分初赛和复赛,在初赛中有两种答题方案:

方案一:每人从道备选题中任意抽出道,若答对,则可参加复赛,否则被淘汰.

方案二:每人从道备选题中任意抽出道,若至少答对其中道,则可参加复赛,否则被润汰.

已知学生甲、乙都只会道备选题中的道,那么你推荐的选手选择哪种答题方条进人复赛的可能性更大?并说明理由.

查看答案和解析>>

同步练习册答案