设数列的前项和为,其中,为常数,且、、成等差数列.
(Ⅰ)求的通项公式;
(Ⅱ)设,问:是否存在,使数列为等比数列?若存在,求出的值;
若不存在,请说明理由.
科目:高中数学 来源:2011届陕西省师大附中、西工大附中高三第五次联考理数 题型:解答题
..(本小题满分12分)
数列的各项均为正数,为其前项和,对于任意,总有成等差数列.
(1)求数列的通项公式;
(2)设,数列的前项和为,求证:.
查看答案和解析>>
科目:高中数学 来源:2011届广东省深圳高级中学高三高考最后模拟考试文数 题型:解答题
(本小题满分14分)数列的各项均为正数,为其前项和,对于任意,总有成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列的前项和为 ,且,求证:对任意实数(是常数,=2.71828)和任意正整数,总有 2;
(Ⅲ) 已知正数数列中,.,求数列中的最大项.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年新疆乌鲁木齐一中高三第一次月考理科数学试卷 题型:解答题
(12分)已知数列,其前n项和,满足,且
。
(1)求实数的值;
(2)求数列的通项公式;
(3)设数列的前项和为,试比较与的大小.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年陕西省、西工大附中高三第五次联考理数 题型:解答题
..(本小题满分12分)
数列的各项均为正数,为其前项和,对于任意,总有成等差数列.
(1)求数列的通项公式;
(2)设,数列的前项和为,求证:.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年湖北省襄樊四校高三期中考试理科数学试卷 题型:解答题
(本题14分)数列的各项均为正数,为其前项和,对于任意总有 成等差数列。
(1)求的通项公式;
(2)设数列的前项和为,且,求证对任意的实数和任意的整数总有;
(3)正数数列中,,求数列的最大项。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com