精英家教网 > 高中数学 > 题目详情
17.已知等差数列{an},S5=10,则a3=(  )
A..0B..1C..2D..3

分析 利用等差数列{an}的性质及其前n项和公式即可得出.

解答 解:由等差数列{an}的性质可得:S5=10=$\frac{5({a}_{1}+{a}_{5})}{2}$=5a3
解得a3=2.
故选:C.

点评 本题考查了等差数列的性质及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.我们将若干个数x,y,z,…的最大值和最小值分别记为max(x,y,z,…)和min(x,y,z,…),已知a+b+c+d+e+f+g=1,求min[max(a+b+c,b+c+d,c+d+e,d+e+f,e+f+g)].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=$\sqrt{3}$sinx-cosx(x∈[0,π])的单调递减区间是(  )
A.[0,$\frac{2π}{3}$]B.[$\frac{π}{2}$,$\frac{2π}{3}$]C.[$\frac{2π}{3}$,π]D.[$\frac{π}{2}$,$\frac{5π}{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=2{cos^2}x-2\sqrt{3}sinxcosx$.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)若关于x的方程f(x)-m=1在$[{-\frac{5π}{12},0}]$上有两个不等实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}x=-4+\frac{{\sqrt{2}}}{2}t\\ y=-2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(其中t为参数).现以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=2cosθ.
(Ⅰ) 写出直线l和曲线C的普通方程;
(Ⅱ) 已知点P为曲线C上的动点,求P到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“a≥-1”是“函数f(x)=x2-2ax-2的减区间是(-∞,-1]”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|x|,
(1)解不等式f(x-2)≤2-f(x);
(2)证明:对任意实数x≠0,有$f({\frac{1}{x}-1})+f({x+1})≥2$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,正方体ABCD-A′B′C′D′中,AB的中点为E,AA′的中点为F,则直线D′F和直线CE(  )
A.都与直线DA相交,且交于同一点B.互相平行
C.异面D.都与直线DA相交,但交于不同点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(x)的解析式;
(2)已知f(x)=(a+2)x-3在($\frac{1}{2}$,2)内有解,求实数a的取值集合(记为集合A);
(3)在(2)中的A中存在实数a使y=af(x)的图象与y=x+b的图象恒有两不同的交点,求实数b的取值范围.

查看答案和解析>>

同步练习册答案