精英家教网 > 高中数学 > 题目详情
过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则△AOB的面积为
3
2
2
3
2
2
分析:设直线AB的倾斜角为θ,利用|AF|=3,可得点A到准线l:x=-1的距离为3,从而cosθ=
1
3
,进而可求|BF|,|AB|,由此可求AOB的面积.
解答:解:设直线AB的倾斜角为θ(0<θ<π)及|BF|=m,
∵|AF|=3,
∴点A到准线l:x=-1的距离为3,
∴2+3cosθ=3,即cosθ=
1
3
,则sinθ=
2
2
3

∵m=2+mcos(π-θ)
∴m=
2
1+cosθ
=
3
2

∴△AOB的面积为S=
1
2
×|OF|×|AB|×sinθ
=
1
2
×1×(3+
3
2
2
2
3
=
3
2
2

故答案为:
3
2
2
点评:本题考查抛物线的定义,考查三角形的面积的计算,确定抛物线的弦长是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

倾斜角为
π
4
的直线过抛物线y2=4x的焦点且与抛物线交于A,B两点,则|AB|=(  )
A、
13
B、8
2
C、16
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F引两条互相垂直的直线AB、CD交抛物线于A、B、C、D四点.
(1)求当|AB|+|CD|取最小值时直线AB、CD的倾斜角的大小
(2)求四边形ACBD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,点O是坐标原点,若|AF|=5,则△AOB的面积为(  )
A、5
B、
5
2
C、
3
2
D、
17
8

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,A、B两点在准线l上的射影分别为M.N,则∠MFN=(  )

查看答案和解析>>

同步练习册答案