精英家教网 > 高中数学 > 题目详情
在△ABC中,a、b、c分别为内角A、B、C的对边,已知向量
m
=(b,c-
2
a)
n
=(cosC,cosB),且
m
n
.(1)求角B的大小;(2)求函数•f(x)=2sin2(B+x)-
3
cos2x(x∈R)
的值域.
分析:(1)根据平面向量垂直时满足的条件数量积为0,变形后利用正弦定理及两角和的正弦函数公式化简,根据三角形的内角和定理及诱导公式化简,当sinA不等于0时,得到cosB的值,由B的范围,利用特殊角的三角函数值即可求出B的度数;
(2)由(1)求出的B代入f(x),利用二倍角的余弦函数公式、诱导公式及两角和与差的正弦函数公式化为一个角的正弦函数,由正弦函数的值域即可求出f(x)的值域.
解答:解:(1)由
m
n
,得
m
n
=bcosC+(c- 
2
a)cosB=0
,即bcosC+ccosB=
2
acosB

由正弦定理得:sinBcosC+cosBsinC=
2
sinAcosB
,即sin(B+C)=
2
sinAcosB

∵sin(B+C)=sin(π-A)=sinA,∴sinA=
2
sinAcosB

由sinA≠O,得cosB=
2
2

∵B∈(0,π),∴B=
π
4

(2)由(1),得f(x)=2sin2(
π
4
+x)-
3
cos2x=1-cos(
π
2
+2x)-
3
cos2x

=1+sin2x-
3
cos2x
=1+2(sin2xcos
π
3
-cos2xsin
π
3
)
=1+2sin(2x-
π
3
)

x∈R,-1≤sin(2x-
π
3
)≤1

∴-1≤f(x)≤3,
∴函数f(x)的值域为[-1,3].
点评:此题考查学生灵活运用两角和与差的正弦函数公式及二倍角的余弦函数公式化简求值,掌握平面向量垂直时满足的条件,掌握正弦函数的值域,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a<b<c,B=60°,面积为10
3
cm2,周长为20cm,求此三角形的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面积S=
3
3
2
,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C为三个内角,若cotA•cotB>1,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)函数的图象是由y=sinx的图象经过如下三步变换得到的:
①将y=sinx的图象整体向左平移
π
6
个单位;
②将①中的图象的纵坐标不变,横坐标缩短为原来的
1
2

③将②中的图象的横坐标不变,纵坐标伸长为原来的2倍.
(1)求f(x)的周期和对称轴;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步练习册答案