精英家教网 > 高中数学 > 题目详情
12.在平面直角坐标系中,已知点B(1,1),曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,点A的极坐标为(4$\sqrt{2}$,$\frac{π}{4}$),直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=a,且l过点A,过点B与直线l平行的直线为l1,l1与曲线C相交于两点M,N
(Ⅰ)求曲线C上的点到直线l距离的最小值
(Ⅱ)求|MN|的值.

分析 (I)点A的极坐标为(4$\sqrt{2}$,$\frac{π}{4}$),直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=a,代入可得a=4$\sqrt{2}$.直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=4$\sqrt{2}$,展开为:$\frac{\sqrt{2}}{2}$ρ(cosθ+sinθ)=4$\sqrt{2}$,即可化为直角坐标方程.利用点到直线的距离公式与和差公式、三角函数的单调性即可得出.
(II)设l1的方程为:x+y+m=0,把B(1,1)代入上述方程可得直线l1的方程为:x+y-2=0.可得参数方程:$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),代入曲线C的普通方程$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.利用根与系数的关系及其|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$即可得出.

解答 解:(I)点A的极坐标为(4$\sqrt{2}$,$\frac{π}{4}$),直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=a,∴a=$4\sqrt{2}cos(\frac{π}{4}-\frac{π}{4})$=4$\sqrt{2}$.
∴直线l的极坐标方程为ρcos(θ-$\frac{π}{4}$)=4$\sqrt{2}$,展开为:$\frac{\sqrt{2}}{2}$ρ(cosθ+sinθ)=4$\sqrt{2}$,化为直角坐标方程:x+y-8=0.
∴曲线C上的点到直线l距离d=$\frac{|2cosθ+\sqrt{3}sinθ-8|}{\sqrt{2}}$=$\frac{|\sqrt{7}sin(θ+φ)-8|}{\sqrt{2}}$≥$\frac{8-\sqrt{7}}{\sqrt{2}}$=$\frac{8\sqrt{2}-\sqrt{14}}{2}$,当sin(θ+φ)=1时取等号.
(II)设l1的方程为:x+y+m=0,把B(1,1)代入上述方程可得:m=-2.
∴直线l1的方程为:x+y-2=0.可得参数方程:$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),代入曲线C的普通方程$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.
化为:7t2+2$\sqrt{2}$t-10=0,∴t1+t2=-$\frac{2\sqrt{2}}{7}$,t1•t2=-$\frac{10}{7}$,
∴|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{(-\frac{2\sqrt{2}}{7})^{2}-4×(-\frac{10}{7})}$=$\frac{12\sqrt{2}}{7}$.

点评 本题考查了极坐标方程化为直角坐标方程、参数方程的应用、弦长公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图,已知ABCD-A′B′C′D′为正方体,则下列结论错误的是(  )
A.平面ACB′∥平面A′C′DB.B′C⊥BD′
C.B′C⊥DC′D.BD′⊥平面A′C′D

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,角A,B,C的对边分别为a,b,c,且满足sinA=2sinBcosC,则△ABC的形状为(  )
A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=(kx+4)lnx-x(x>1),若f(x)>0的解集为(s,t),且(s,t)中只有一个整数,则实数k的取值范围为($\frac{1}{ln3}$-$\frac{4}{3}$,$\frac{1}{2ln2}-1$)..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,北京天坛圆丘的地面由扇环形的石板铺成(如图所示),最高一层是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则前9圈的石板总数是405.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知F1,F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,以F1F2为直径的圆与双曲线右支的一个交点为P,PF1与双曲线相交于点Q,且|PQ|=2|QF1|,则该双曲线的离心率为 (  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow{e_1}$和$\overrightarrow{e_2}$是两个单位向量,夹角为$\frac{π}{3}$,则($\overrightarrow{e_1}-\overrightarrow{e_2}$)$•(-3\overrightarrow{e_1}+2\overrightarrow{e_2})$等于(  )
A.-8B.$\frac{9}{2}$C.$-\frac{5}{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知三棱锥P-ABC的三条侧棱两两互相垂直,且AB=$\sqrt{5}$,BC=$\sqrt{7}$,AC=2,则此三棱锥外接球的表面积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知正项数列{an},$\frac{n}{{a}_{1}+2{a}_{2}+3{a}_{3}+…+n{a}_{n}}$=$\frac{2}{n+2}$(n∈N*),求数列{an}的通项an

查看答案和解析>>

同步练习册答案